3.81/1.85 YES 3.96/1.86 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.96/1.86 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.96/1.86 3.96/1.86 3.96/1.86 Termination w.r.t. Q of the given QTRS could be proven: 3.96/1.86 3.96/1.86 (0) QTRS 3.96/1.86 (1) DependencyPairsProof [EQUIVALENT, 2 ms] 3.96/1.86 (2) QDP 3.96/1.86 (3) DependencyGraphProof [EQUIVALENT, 0 ms] 3.96/1.86 (4) AND 3.96/1.86 (5) QDP 3.96/1.86 (6) UsableRulesProof [EQUIVALENT, 0 ms] 3.96/1.86 (7) QDP 3.96/1.86 (8) QReductionProof [EQUIVALENT, 0 ms] 3.96/1.86 (9) QDP 3.96/1.86 (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] 3.96/1.86 (11) YES 3.96/1.86 (12) QDP 3.96/1.86 (13) UsableRulesProof [EQUIVALENT, 0 ms] 3.96/1.86 (14) QDP 3.96/1.86 (15) QReductionProof [EQUIVALENT, 0 ms] 3.96/1.86 (16) QDP 3.96/1.86 (17) QDPSizeChangeProof [EQUIVALENT, 0 ms] 3.96/1.86 (18) YES 3.96/1.86 (19) QDP 3.96/1.86 (20) UsableRulesProof [EQUIVALENT, 0 ms] 3.96/1.86 (21) QDP 3.96/1.86 (22) QReductionProof [EQUIVALENT, 0 ms] 3.96/1.86 (23) QDP 3.96/1.86 (24) TransformationProof [EQUIVALENT, 0 ms] 3.96/1.86 (25) QDP 3.96/1.86 (26) DependencyGraphProof [EQUIVALENT, 0 ms] 3.96/1.86 (27) TRUE 3.96/1.86 (28) QDP 3.96/1.86 (29) UsableRulesProof [EQUIVALENT, 0 ms] 3.96/1.86 (30) QDP 3.96/1.86 (31) QReductionProof [EQUIVALENT, 0 ms] 3.96/1.86 (32) QDP 3.96/1.86 (33) QDPSizeChangeProof [EQUIVALENT, 0 ms] 3.96/1.86 (34) YES 3.96/1.86 3.96/1.86 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (0) 3.96/1.86 Obligation: 3.96/1.86 Q restricted rewrite system: 3.96/1.86 The TRS R consists of the following rules: 3.96/1.86 3.96/1.86 active(f(X, g(X), Y)) -> mark(f(Y, Y, Y)) 3.96/1.86 active(g(b)) -> mark(c) 3.96/1.86 active(b) -> mark(c) 3.96/1.86 mark(f(X1, X2, X3)) -> active(f(X1, X2, X3)) 3.96/1.86 mark(g(X)) -> active(g(mark(X))) 3.96/1.86 mark(b) -> active(b) 3.96/1.86 mark(c) -> active(c) 3.96/1.86 f(mark(X1), X2, X3) -> f(X1, X2, X3) 3.96/1.86 f(X1, mark(X2), X3) -> f(X1, X2, X3) 3.96/1.86 f(X1, X2, mark(X3)) -> f(X1, X2, X3) 3.96/1.86 f(active(X1), X2, X3) -> f(X1, X2, X3) 3.96/1.86 f(X1, active(X2), X3) -> f(X1, X2, X3) 3.96/1.86 f(X1, X2, active(X3)) -> f(X1, X2, X3) 3.96/1.86 g(mark(X)) -> g(X) 3.96/1.86 g(active(X)) -> g(X) 3.96/1.86 3.96/1.86 The set Q consists of the following terms: 3.96/1.86 3.96/1.86 active(f(x0, g(x0), x1)) 3.96/1.86 active(g(b)) 3.96/1.86 active(b) 3.96/1.86 mark(f(x0, x1, x2)) 3.96/1.86 mark(g(x0)) 3.96/1.86 mark(b) 3.96/1.86 mark(c) 3.96/1.86 f(mark(x0), x1, x2) 3.96/1.86 f(x0, mark(x1), x2) 3.96/1.86 f(x0, x1, mark(x2)) 3.96/1.86 f(active(x0), x1, x2) 3.96/1.86 f(x0, active(x1), x2) 3.96/1.86 f(x0, x1, active(x2)) 3.96/1.86 g(mark(x0)) 3.96/1.86 g(active(x0)) 3.96/1.86 3.96/1.86 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (1) DependencyPairsProof (EQUIVALENT) 3.96/1.86 Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (2) 3.96/1.86 Obligation: 3.96/1.86 Q DP problem: 3.96/1.86 The TRS P consists of the following rules: 3.96/1.86 3.96/1.86 ACTIVE(f(X, g(X), Y)) -> MARK(f(Y, Y, Y)) 3.96/1.86 ACTIVE(f(X, g(X), Y)) -> F(Y, Y, Y) 3.96/1.86 ACTIVE(g(b)) -> MARK(c) 3.96/1.86 ACTIVE(b) -> MARK(c) 3.96/1.86 MARK(f(X1, X2, X3)) -> ACTIVE(f(X1, X2, X3)) 3.96/1.86 MARK(g(X)) -> ACTIVE(g(mark(X))) 3.96/1.86 MARK(g(X)) -> G(mark(X)) 3.96/1.86 MARK(g(X)) -> MARK(X) 3.96/1.86 MARK(b) -> ACTIVE(b) 3.96/1.86 MARK(c) -> ACTIVE(c) 3.96/1.86 F(mark(X1), X2, X3) -> F(X1, X2, X3) 3.96/1.86 F(X1, mark(X2), X3) -> F(X1, X2, X3) 3.96/1.86 F(X1, X2, mark(X3)) -> F(X1, X2, X3) 3.96/1.86 F(active(X1), X2, X3) -> F(X1, X2, X3) 3.96/1.86 F(X1, active(X2), X3) -> F(X1, X2, X3) 3.96/1.86 F(X1, X2, active(X3)) -> F(X1, X2, X3) 3.96/1.86 G(mark(X)) -> G(X) 3.96/1.86 G(active(X)) -> G(X) 3.96/1.86 3.96/1.86 The TRS R consists of the following rules: 3.96/1.86 3.96/1.86 active(f(X, g(X), Y)) -> mark(f(Y, Y, Y)) 3.96/1.86 active(g(b)) -> mark(c) 3.96/1.86 active(b) -> mark(c) 3.96/1.86 mark(f(X1, X2, X3)) -> active(f(X1, X2, X3)) 3.96/1.86 mark(g(X)) -> active(g(mark(X))) 3.96/1.86 mark(b) -> active(b) 3.96/1.86 mark(c) -> active(c) 3.96/1.86 f(mark(X1), X2, X3) -> f(X1, X2, X3) 3.96/1.86 f(X1, mark(X2), X3) -> f(X1, X2, X3) 3.96/1.86 f(X1, X2, mark(X3)) -> f(X1, X2, X3) 3.96/1.86 f(active(X1), X2, X3) -> f(X1, X2, X3) 3.96/1.86 f(X1, active(X2), X3) -> f(X1, X2, X3) 3.96/1.86 f(X1, X2, active(X3)) -> f(X1, X2, X3) 3.96/1.86 g(mark(X)) -> g(X) 3.96/1.86 g(active(X)) -> g(X) 3.96/1.86 3.96/1.86 The set Q consists of the following terms: 3.96/1.86 3.96/1.86 active(f(x0, g(x0), x1)) 3.96/1.86 active(g(b)) 3.96/1.86 active(b) 3.96/1.86 mark(f(x0, x1, x2)) 3.96/1.86 mark(g(x0)) 3.96/1.86 mark(b) 3.96/1.86 mark(c) 3.96/1.86 f(mark(x0), x1, x2) 3.96/1.86 f(x0, mark(x1), x2) 3.96/1.86 f(x0, x1, mark(x2)) 3.96/1.86 f(active(x0), x1, x2) 3.96/1.86 f(x0, active(x1), x2) 3.96/1.86 f(x0, x1, active(x2)) 3.96/1.86 g(mark(x0)) 3.96/1.86 g(active(x0)) 3.96/1.86 3.96/1.86 We have to consider all minimal (P,Q,R)-chains. 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (3) DependencyGraphProof (EQUIVALENT) 3.96/1.86 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 7 less nodes. 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (4) 3.96/1.86 Complex Obligation (AND) 3.96/1.86 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (5) 3.96/1.86 Obligation: 3.96/1.86 Q DP problem: 3.96/1.86 The TRS P consists of the following rules: 3.96/1.86 3.96/1.86 G(active(X)) -> G(X) 3.96/1.86 G(mark(X)) -> G(X) 3.96/1.86 3.96/1.86 The TRS R consists of the following rules: 3.96/1.86 3.96/1.86 active(f(X, g(X), Y)) -> mark(f(Y, Y, Y)) 3.96/1.86 active(g(b)) -> mark(c) 3.96/1.86 active(b) -> mark(c) 3.96/1.86 mark(f(X1, X2, X3)) -> active(f(X1, X2, X3)) 3.96/1.86 mark(g(X)) -> active(g(mark(X))) 3.96/1.86 mark(b) -> active(b) 3.96/1.86 mark(c) -> active(c) 3.96/1.86 f(mark(X1), X2, X3) -> f(X1, X2, X3) 3.96/1.86 f(X1, mark(X2), X3) -> f(X1, X2, X3) 3.96/1.86 f(X1, X2, mark(X3)) -> f(X1, X2, X3) 3.96/1.86 f(active(X1), X2, X3) -> f(X1, X2, X3) 3.96/1.86 f(X1, active(X2), X3) -> f(X1, X2, X3) 3.96/1.86 f(X1, X2, active(X3)) -> f(X1, X2, X3) 3.96/1.86 g(mark(X)) -> g(X) 3.96/1.86 g(active(X)) -> g(X) 3.96/1.86 3.96/1.86 The set Q consists of the following terms: 3.96/1.86 3.96/1.86 active(f(x0, g(x0), x1)) 3.96/1.86 active(g(b)) 3.96/1.86 active(b) 3.96/1.86 mark(f(x0, x1, x2)) 3.96/1.86 mark(g(x0)) 3.96/1.86 mark(b) 3.96/1.86 mark(c) 3.96/1.86 f(mark(x0), x1, x2) 3.96/1.86 f(x0, mark(x1), x2) 3.96/1.86 f(x0, x1, mark(x2)) 3.96/1.86 f(active(x0), x1, x2) 3.96/1.86 f(x0, active(x1), x2) 3.96/1.86 f(x0, x1, active(x2)) 3.96/1.86 g(mark(x0)) 3.96/1.86 g(active(x0)) 3.96/1.86 3.96/1.86 We have to consider all minimal (P,Q,R)-chains. 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (6) UsableRulesProof (EQUIVALENT) 3.96/1.86 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (7) 3.96/1.86 Obligation: 3.96/1.86 Q DP problem: 3.96/1.86 The TRS P consists of the following rules: 3.96/1.86 3.96/1.86 G(active(X)) -> G(X) 3.96/1.86 G(mark(X)) -> G(X) 3.96/1.86 3.96/1.86 R is empty. 3.96/1.86 The set Q consists of the following terms: 3.96/1.86 3.96/1.86 active(f(x0, g(x0), x1)) 3.96/1.86 active(g(b)) 3.96/1.86 active(b) 3.96/1.86 mark(f(x0, x1, x2)) 3.96/1.86 mark(g(x0)) 3.96/1.86 mark(b) 3.96/1.86 mark(c) 3.96/1.86 f(mark(x0), x1, x2) 3.96/1.86 f(x0, mark(x1), x2) 3.96/1.86 f(x0, x1, mark(x2)) 3.96/1.86 f(active(x0), x1, x2) 3.96/1.86 f(x0, active(x1), x2) 3.96/1.86 f(x0, x1, active(x2)) 3.96/1.86 g(mark(x0)) 3.96/1.86 g(active(x0)) 3.96/1.86 3.96/1.86 We have to consider all minimal (P,Q,R)-chains. 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (8) QReductionProof (EQUIVALENT) 3.96/1.86 We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. 3.96/1.86 3.96/1.86 f(mark(x0), x1, x2) 3.96/1.86 f(x0, mark(x1), x2) 3.96/1.86 f(x0, x1, mark(x2)) 3.96/1.86 f(active(x0), x1, x2) 3.96/1.86 f(x0, active(x1), x2) 3.96/1.86 f(x0, x1, active(x2)) 3.96/1.86 g(mark(x0)) 3.96/1.86 g(active(x0)) 3.96/1.86 3.96/1.86 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (9) 3.96/1.86 Obligation: 3.96/1.86 Q DP problem: 3.96/1.86 The TRS P consists of the following rules: 3.96/1.86 3.96/1.86 G(active(X)) -> G(X) 3.96/1.86 G(mark(X)) -> G(X) 3.96/1.86 3.96/1.86 R is empty. 3.96/1.86 The set Q consists of the following terms: 3.96/1.86 3.96/1.86 active(f(x0, g(x0), x1)) 3.96/1.86 active(g(b)) 3.96/1.86 active(b) 3.96/1.86 mark(f(x0, x1, x2)) 3.96/1.86 mark(g(x0)) 3.96/1.86 mark(b) 3.96/1.86 mark(c) 3.96/1.86 3.96/1.86 We have to consider all minimal (P,Q,R)-chains. 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (10) QDPSizeChangeProof (EQUIVALENT) 3.96/1.86 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 3.96/1.86 3.96/1.86 From the DPs we obtained the following set of size-change graphs: 3.96/1.86 *G(active(X)) -> G(X) 3.96/1.86 The graph contains the following edges 1 > 1 3.96/1.86 3.96/1.86 3.96/1.86 *G(mark(X)) -> G(X) 3.96/1.86 The graph contains the following edges 1 > 1 3.96/1.86 3.96/1.86 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (11) 3.96/1.86 YES 3.96/1.86 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (12) 3.96/1.86 Obligation: 3.96/1.86 Q DP problem: 3.96/1.86 The TRS P consists of the following rules: 3.96/1.86 3.96/1.86 F(X1, mark(X2), X3) -> F(X1, X2, X3) 3.96/1.86 F(mark(X1), X2, X3) -> F(X1, X2, X3) 3.96/1.86 F(X1, X2, mark(X3)) -> F(X1, X2, X3) 3.96/1.86 F(active(X1), X2, X3) -> F(X1, X2, X3) 3.96/1.86 F(X1, active(X2), X3) -> F(X1, X2, X3) 3.96/1.86 F(X1, X2, active(X3)) -> F(X1, X2, X3) 3.96/1.86 3.96/1.86 The TRS R consists of the following rules: 3.96/1.86 3.96/1.86 active(f(X, g(X), Y)) -> mark(f(Y, Y, Y)) 3.96/1.86 active(g(b)) -> mark(c) 3.96/1.86 active(b) -> mark(c) 3.96/1.86 mark(f(X1, X2, X3)) -> active(f(X1, X2, X3)) 3.96/1.86 mark(g(X)) -> active(g(mark(X))) 3.96/1.86 mark(b) -> active(b) 3.96/1.86 mark(c) -> active(c) 3.96/1.86 f(mark(X1), X2, X3) -> f(X1, X2, X3) 3.96/1.86 f(X1, mark(X2), X3) -> f(X1, X2, X3) 3.96/1.86 f(X1, X2, mark(X3)) -> f(X1, X2, X3) 3.96/1.86 f(active(X1), X2, X3) -> f(X1, X2, X3) 3.96/1.86 f(X1, active(X2), X3) -> f(X1, X2, X3) 3.96/1.86 f(X1, X2, active(X3)) -> f(X1, X2, X3) 3.96/1.86 g(mark(X)) -> g(X) 3.96/1.86 g(active(X)) -> g(X) 3.96/1.86 3.96/1.86 The set Q consists of the following terms: 3.96/1.86 3.96/1.86 active(f(x0, g(x0), x1)) 3.96/1.86 active(g(b)) 3.96/1.86 active(b) 3.96/1.86 mark(f(x0, x1, x2)) 3.96/1.86 mark(g(x0)) 3.96/1.86 mark(b) 3.96/1.86 mark(c) 3.96/1.86 f(mark(x0), x1, x2) 3.96/1.86 f(x0, mark(x1), x2) 3.96/1.86 f(x0, x1, mark(x2)) 3.96/1.86 f(active(x0), x1, x2) 3.96/1.86 f(x0, active(x1), x2) 3.96/1.86 f(x0, x1, active(x2)) 3.96/1.86 g(mark(x0)) 3.96/1.86 g(active(x0)) 3.96/1.86 3.96/1.86 We have to consider all minimal (P,Q,R)-chains. 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (13) UsableRulesProof (EQUIVALENT) 3.96/1.86 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (14) 3.96/1.86 Obligation: 3.96/1.86 Q DP problem: 3.96/1.86 The TRS P consists of the following rules: 3.96/1.86 3.96/1.86 F(X1, mark(X2), X3) -> F(X1, X2, X3) 3.96/1.86 F(mark(X1), X2, X3) -> F(X1, X2, X3) 3.96/1.86 F(X1, X2, mark(X3)) -> F(X1, X2, X3) 3.96/1.86 F(active(X1), X2, X3) -> F(X1, X2, X3) 3.96/1.86 F(X1, active(X2), X3) -> F(X1, X2, X3) 3.96/1.86 F(X1, X2, active(X3)) -> F(X1, X2, X3) 3.96/1.86 3.96/1.86 R is empty. 3.96/1.86 The set Q consists of the following terms: 3.96/1.86 3.96/1.86 active(f(x0, g(x0), x1)) 3.96/1.86 active(g(b)) 3.96/1.86 active(b) 3.96/1.86 mark(f(x0, x1, x2)) 3.96/1.86 mark(g(x0)) 3.96/1.86 mark(b) 3.96/1.86 mark(c) 3.96/1.86 f(mark(x0), x1, x2) 3.96/1.86 f(x0, mark(x1), x2) 3.96/1.86 f(x0, x1, mark(x2)) 3.96/1.86 f(active(x0), x1, x2) 3.96/1.86 f(x0, active(x1), x2) 3.96/1.86 f(x0, x1, active(x2)) 3.96/1.86 g(mark(x0)) 3.96/1.86 g(active(x0)) 3.96/1.86 3.96/1.86 We have to consider all minimal (P,Q,R)-chains. 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (15) QReductionProof (EQUIVALENT) 3.96/1.86 We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. 3.96/1.86 3.96/1.86 f(mark(x0), x1, x2) 3.96/1.86 f(x0, mark(x1), x2) 3.96/1.86 f(x0, x1, mark(x2)) 3.96/1.86 f(active(x0), x1, x2) 3.96/1.86 f(x0, active(x1), x2) 3.96/1.86 f(x0, x1, active(x2)) 3.96/1.86 g(mark(x0)) 3.96/1.86 g(active(x0)) 3.96/1.86 3.96/1.86 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (16) 3.96/1.86 Obligation: 3.96/1.86 Q DP problem: 3.96/1.86 The TRS P consists of the following rules: 3.96/1.86 3.96/1.86 F(X1, mark(X2), X3) -> F(X1, X2, X3) 3.96/1.86 F(mark(X1), X2, X3) -> F(X1, X2, X3) 3.96/1.86 F(X1, X2, mark(X3)) -> F(X1, X2, X3) 3.96/1.86 F(active(X1), X2, X3) -> F(X1, X2, X3) 3.96/1.86 F(X1, active(X2), X3) -> F(X1, X2, X3) 3.96/1.86 F(X1, X2, active(X3)) -> F(X1, X2, X3) 3.96/1.86 3.96/1.86 R is empty. 3.96/1.86 The set Q consists of the following terms: 3.96/1.86 3.96/1.86 active(f(x0, g(x0), x1)) 3.96/1.86 active(g(b)) 3.96/1.86 active(b) 3.96/1.86 mark(f(x0, x1, x2)) 3.96/1.86 mark(g(x0)) 3.96/1.86 mark(b) 3.96/1.86 mark(c) 3.96/1.86 3.96/1.86 We have to consider all minimal (P,Q,R)-chains. 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (17) QDPSizeChangeProof (EQUIVALENT) 3.96/1.86 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 3.96/1.86 3.96/1.86 From the DPs we obtained the following set of size-change graphs: 3.96/1.86 *F(X1, mark(X2), X3) -> F(X1, X2, X3) 3.96/1.86 The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3 3.96/1.86 3.96/1.86 3.96/1.86 *F(mark(X1), X2, X3) -> F(X1, X2, X3) 3.96/1.86 The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 3.96/1.86 3.96/1.86 3.96/1.86 *F(X1, X2, mark(X3)) -> F(X1, X2, X3) 3.96/1.86 The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3 3.96/1.86 3.96/1.86 3.96/1.86 *F(active(X1), X2, X3) -> F(X1, X2, X3) 3.96/1.86 The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 3.96/1.86 3.96/1.86 3.96/1.86 *F(X1, active(X2), X3) -> F(X1, X2, X3) 3.96/1.86 The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3 3.96/1.86 3.96/1.86 3.96/1.86 *F(X1, X2, active(X3)) -> F(X1, X2, X3) 3.96/1.86 The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3 3.96/1.86 3.96/1.86 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (18) 3.96/1.86 YES 3.96/1.86 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (19) 3.96/1.86 Obligation: 3.96/1.86 Q DP problem: 3.96/1.86 The TRS P consists of the following rules: 3.96/1.86 3.96/1.86 MARK(f(X1, X2, X3)) -> ACTIVE(f(X1, X2, X3)) 3.96/1.86 ACTIVE(f(X, g(X), Y)) -> MARK(f(Y, Y, Y)) 3.96/1.86 3.96/1.86 The TRS R consists of the following rules: 3.96/1.86 3.96/1.86 active(f(X, g(X), Y)) -> mark(f(Y, Y, Y)) 3.96/1.86 active(g(b)) -> mark(c) 3.96/1.86 active(b) -> mark(c) 3.96/1.86 mark(f(X1, X2, X3)) -> active(f(X1, X2, X3)) 3.96/1.86 mark(g(X)) -> active(g(mark(X))) 3.96/1.86 mark(b) -> active(b) 3.96/1.86 mark(c) -> active(c) 3.96/1.86 f(mark(X1), X2, X3) -> f(X1, X2, X3) 3.96/1.86 f(X1, mark(X2), X3) -> f(X1, X2, X3) 3.96/1.86 f(X1, X2, mark(X3)) -> f(X1, X2, X3) 3.96/1.86 f(active(X1), X2, X3) -> f(X1, X2, X3) 3.96/1.86 f(X1, active(X2), X3) -> f(X1, X2, X3) 3.96/1.86 f(X1, X2, active(X3)) -> f(X1, X2, X3) 3.96/1.86 g(mark(X)) -> g(X) 3.96/1.86 g(active(X)) -> g(X) 3.96/1.86 3.96/1.86 The set Q consists of the following terms: 3.96/1.86 3.96/1.86 active(f(x0, g(x0), x1)) 3.96/1.86 active(g(b)) 3.96/1.86 active(b) 3.96/1.86 mark(f(x0, x1, x2)) 3.96/1.86 mark(g(x0)) 3.96/1.86 mark(b) 3.96/1.86 mark(c) 3.96/1.86 f(mark(x0), x1, x2) 3.96/1.86 f(x0, mark(x1), x2) 3.96/1.86 f(x0, x1, mark(x2)) 3.96/1.86 f(active(x0), x1, x2) 3.96/1.86 f(x0, active(x1), x2) 3.96/1.86 f(x0, x1, active(x2)) 3.96/1.86 g(mark(x0)) 3.96/1.86 g(active(x0)) 3.96/1.86 3.96/1.86 We have to consider all minimal (P,Q,R)-chains. 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (20) UsableRulesProof (EQUIVALENT) 3.96/1.86 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (21) 3.96/1.86 Obligation: 3.96/1.86 Q DP problem: 3.96/1.86 The TRS P consists of the following rules: 3.96/1.86 3.96/1.86 MARK(f(X1, X2, X3)) -> ACTIVE(f(X1, X2, X3)) 3.96/1.86 ACTIVE(f(X, g(X), Y)) -> MARK(f(Y, Y, Y)) 3.96/1.86 3.96/1.86 R is empty. 3.96/1.86 The set Q consists of the following terms: 3.96/1.86 3.96/1.86 active(f(x0, g(x0), x1)) 3.96/1.86 active(g(b)) 3.96/1.86 active(b) 3.96/1.86 mark(f(x0, x1, x2)) 3.96/1.86 mark(g(x0)) 3.96/1.86 mark(b) 3.96/1.86 mark(c) 3.96/1.86 f(mark(x0), x1, x2) 3.96/1.86 f(x0, mark(x1), x2) 3.96/1.86 f(x0, x1, mark(x2)) 3.96/1.86 f(active(x0), x1, x2) 3.96/1.86 f(x0, active(x1), x2) 3.96/1.86 f(x0, x1, active(x2)) 3.96/1.86 g(mark(x0)) 3.96/1.86 g(active(x0)) 3.96/1.86 3.96/1.86 We have to consider all minimal (P,Q,R)-chains. 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (22) QReductionProof (EQUIVALENT) 3.96/1.86 We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. 3.96/1.86 3.96/1.86 active(f(x0, g(x0), x1)) 3.96/1.86 active(g(b)) 3.96/1.86 active(b) 3.96/1.86 mark(f(x0, x1, x2)) 3.96/1.86 mark(g(x0)) 3.96/1.86 mark(b) 3.96/1.86 mark(c) 3.96/1.86 3.96/1.86 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (23) 3.96/1.86 Obligation: 3.96/1.86 Q DP problem: 3.96/1.86 The TRS P consists of the following rules: 3.96/1.86 3.96/1.86 MARK(f(X1, X2, X3)) -> ACTIVE(f(X1, X2, X3)) 3.96/1.86 ACTIVE(f(X, g(X), Y)) -> MARK(f(Y, Y, Y)) 3.96/1.86 3.96/1.86 R is empty. 3.96/1.86 The set Q consists of the following terms: 3.96/1.86 3.96/1.86 f(mark(x0), x1, x2) 3.96/1.86 f(x0, mark(x1), x2) 3.96/1.86 f(x0, x1, mark(x2)) 3.96/1.86 f(active(x0), x1, x2) 3.96/1.86 f(x0, active(x1), x2) 3.96/1.86 f(x0, x1, active(x2)) 3.96/1.86 g(mark(x0)) 3.96/1.86 g(active(x0)) 3.96/1.86 3.96/1.86 We have to consider all minimal (P,Q,R)-chains. 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (24) TransformationProof (EQUIVALENT) 3.96/1.86 By instantiating [LPAR04] the rule MARK(f(X1, X2, X3)) -> ACTIVE(f(X1, X2, X3)) we obtained the following new rules [LPAR04]: 3.96/1.86 3.96/1.86 (MARK(f(z1, z1, z1)) -> ACTIVE(f(z1, z1, z1)),MARK(f(z1, z1, z1)) -> ACTIVE(f(z1, z1, z1))) 3.96/1.86 3.96/1.86 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (25) 3.96/1.86 Obligation: 3.96/1.86 Q DP problem: 3.96/1.86 The TRS P consists of the following rules: 3.96/1.86 3.96/1.86 ACTIVE(f(X, g(X), Y)) -> MARK(f(Y, Y, Y)) 3.96/1.86 MARK(f(z1, z1, z1)) -> ACTIVE(f(z1, z1, z1)) 3.96/1.86 3.96/1.86 R is empty. 3.96/1.86 The set Q consists of the following terms: 3.96/1.86 3.96/1.86 f(mark(x0), x1, x2) 3.96/1.86 f(x0, mark(x1), x2) 3.96/1.86 f(x0, x1, mark(x2)) 3.96/1.86 f(active(x0), x1, x2) 3.96/1.86 f(x0, active(x1), x2) 3.96/1.86 f(x0, x1, active(x2)) 3.96/1.86 g(mark(x0)) 3.96/1.86 g(active(x0)) 3.96/1.86 3.96/1.86 We have to consider all minimal (P,Q,R)-chains. 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (26) DependencyGraphProof (EQUIVALENT) 3.96/1.86 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes. 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (27) 3.96/1.86 TRUE 3.96/1.86 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (28) 3.96/1.86 Obligation: 3.96/1.86 Q DP problem: 3.96/1.86 The TRS P consists of the following rules: 3.96/1.86 3.96/1.86 MARK(g(X)) -> MARK(X) 3.96/1.86 3.96/1.86 The TRS R consists of the following rules: 3.96/1.86 3.96/1.86 active(f(X, g(X), Y)) -> mark(f(Y, Y, Y)) 3.96/1.86 active(g(b)) -> mark(c) 3.96/1.86 active(b) -> mark(c) 3.96/1.86 mark(f(X1, X2, X3)) -> active(f(X1, X2, X3)) 3.96/1.86 mark(g(X)) -> active(g(mark(X))) 3.96/1.86 mark(b) -> active(b) 3.96/1.86 mark(c) -> active(c) 3.96/1.86 f(mark(X1), X2, X3) -> f(X1, X2, X3) 3.96/1.86 f(X1, mark(X2), X3) -> f(X1, X2, X3) 3.96/1.86 f(X1, X2, mark(X3)) -> f(X1, X2, X3) 3.96/1.86 f(active(X1), X2, X3) -> f(X1, X2, X3) 3.96/1.86 f(X1, active(X2), X3) -> f(X1, X2, X3) 3.96/1.86 f(X1, X2, active(X3)) -> f(X1, X2, X3) 3.96/1.86 g(mark(X)) -> g(X) 3.96/1.86 g(active(X)) -> g(X) 3.96/1.86 3.96/1.86 The set Q consists of the following terms: 3.96/1.86 3.96/1.86 active(f(x0, g(x0), x1)) 3.96/1.86 active(g(b)) 3.96/1.86 active(b) 3.96/1.86 mark(f(x0, x1, x2)) 3.96/1.86 mark(g(x0)) 3.96/1.86 mark(b) 3.96/1.86 mark(c) 3.96/1.86 f(mark(x0), x1, x2) 3.96/1.86 f(x0, mark(x1), x2) 3.96/1.86 f(x0, x1, mark(x2)) 3.96/1.86 f(active(x0), x1, x2) 3.96/1.86 f(x0, active(x1), x2) 3.96/1.86 f(x0, x1, active(x2)) 3.96/1.86 g(mark(x0)) 3.96/1.86 g(active(x0)) 3.96/1.86 3.96/1.86 We have to consider all minimal (P,Q,R)-chains. 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (29) UsableRulesProof (EQUIVALENT) 3.96/1.86 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (30) 3.96/1.86 Obligation: 3.96/1.86 Q DP problem: 3.96/1.86 The TRS P consists of the following rules: 3.96/1.86 3.96/1.86 MARK(g(X)) -> MARK(X) 3.96/1.86 3.96/1.86 R is empty. 3.96/1.86 The set Q consists of the following terms: 3.96/1.86 3.96/1.86 active(f(x0, g(x0), x1)) 3.96/1.86 active(g(b)) 3.96/1.86 active(b) 3.96/1.86 mark(f(x0, x1, x2)) 3.96/1.86 mark(g(x0)) 3.96/1.86 mark(b) 3.96/1.86 mark(c) 3.96/1.86 f(mark(x0), x1, x2) 3.96/1.86 f(x0, mark(x1), x2) 3.96/1.86 f(x0, x1, mark(x2)) 3.96/1.86 f(active(x0), x1, x2) 3.96/1.86 f(x0, active(x1), x2) 3.96/1.86 f(x0, x1, active(x2)) 3.96/1.86 g(mark(x0)) 3.96/1.86 g(active(x0)) 3.96/1.86 3.96/1.86 We have to consider all minimal (P,Q,R)-chains. 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (31) QReductionProof (EQUIVALENT) 3.96/1.86 We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. 3.96/1.86 3.96/1.86 active(f(x0, g(x0), x1)) 3.96/1.86 active(g(b)) 3.96/1.86 active(b) 3.96/1.86 mark(f(x0, x1, x2)) 3.96/1.86 mark(g(x0)) 3.96/1.86 mark(b) 3.96/1.86 mark(c) 3.96/1.86 f(mark(x0), x1, x2) 3.96/1.86 f(x0, mark(x1), x2) 3.96/1.86 f(x0, x1, mark(x2)) 3.96/1.86 f(active(x0), x1, x2) 3.96/1.86 f(x0, active(x1), x2) 3.96/1.86 f(x0, x1, active(x2)) 3.96/1.86 3.96/1.86 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (32) 3.96/1.86 Obligation: 3.96/1.86 Q DP problem: 3.96/1.86 The TRS P consists of the following rules: 3.96/1.86 3.96/1.86 MARK(g(X)) -> MARK(X) 3.96/1.86 3.96/1.86 R is empty. 3.96/1.86 The set Q consists of the following terms: 3.96/1.86 3.96/1.86 g(mark(x0)) 3.96/1.86 g(active(x0)) 3.96/1.86 3.96/1.86 We have to consider all minimal (P,Q,R)-chains. 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (33) QDPSizeChangeProof (EQUIVALENT) 3.96/1.86 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 3.96/1.86 3.96/1.86 From the DPs we obtained the following set of size-change graphs: 3.96/1.86 *MARK(g(X)) -> MARK(X) 3.96/1.86 The graph contains the following edges 1 > 1 3.96/1.86 3.96/1.86 3.96/1.86 ---------------------------------------- 3.96/1.86 3.96/1.86 (34) 3.96/1.86 YES 3.96/1.89 EOF