0.00/0.09 YES 0.00/0.09 0.00/0.09 DP problem for innermost termination. 0.00/0.09 P = 0.00/0.09 init#(x1) -> f1#(rnd1) 0.00/0.09 f2#(I0) -> f2#(I0 - 1) [0 <= I0 - 1] 0.00/0.09 f1#(I1) -> f2#(9) 0.00/0.09 R = 0.00/0.09 init(x1) -> f1(rnd1) 0.00/0.09 f2(I0) -> f2(I0 - 1) [0 <= I0 - 1] 0.00/0.09 f1(I1) -> f2(9) 0.00/0.09 0.00/0.09 The dependency graph for this problem is: 0.00/0.09 0 -> 2 0.00/0.09 1 -> 1 0.00/0.09 2 -> 1 0.00/0.09 Where: 0.00/0.09 0) init#(x1) -> f1#(rnd1) 0.00/0.09 1) f2#(I0) -> f2#(I0 - 1) [0 <= I0 - 1] 0.00/0.09 2) f1#(I1) -> f2#(9) 0.00/0.09 0.00/0.09 We have the following SCCs. 0.00/0.09 { 1 } 0.00/0.09 0.00/0.09 DP problem for innermost termination. 0.00/0.09 P = 0.00/0.09 f2#(I0) -> f2#(I0 - 1) [0 <= I0 - 1] 0.00/0.09 R = 0.00/0.09 init(x1) -> f1(rnd1) 0.00/0.09 f2(I0) -> f2(I0 - 1) [0 <= I0 - 1] 0.00/0.09 f1(I1) -> f2(9) 0.00/0.09 0.00/0.09 We use the basic value criterion with the projection function NU: 0.00/0.09 NU[f2#(z1)] = z1 0.00/0.09 0.00/0.09 This gives the following inequalities: 0.00/0.09 0 <= I0 - 1 ==> I0 >! I0 - 1 0.00/0.09 0.00/0.09 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.08 EOF