0.00/0.18 YES 0.00/0.18 0.00/0.18 DP problem for innermost termination. 0.00/0.18 P = 0.00/0.18 init#(x1) -> f1#(rnd1) 0.00/0.18 f2#(I0) -> f2#(I0 + 1) [I0 <= 10] 0.00/0.18 f1#(I1) -> f2#(0) 0.00/0.18 R = 0.00/0.18 init(x1) -> f1(rnd1) 0.00/0.18 f2(I0) -> f2(I0 + 1) [I0 <= 10] 0.00/0.18 f1(I1) -> f2(0) 0.00/0.18 0.00/0.18 The dependency graph for this problem is: 0.00/0.18 0 -> 2 0.00/0.18 1 -> 1 0.00/0.18 2 -> 1 0.00/0.18 Where: 0.00/0.18 0) init#(x1) -> f1#(rnd1) 0.00/0.18 1) f2#(I0) -> f2#(I0 + 1) [I0 <= 10] 0.00/0.18 2) f1#(I1) -> f2#(0) 0.00/0.18 0.00/0.18 We have the following SCCs. 0.00/0.18 { 1 } 0.00/0.18 0.00/0.18 DP problem for innermost termination. 0.00/0.18 P = 0.00/0.18 f2#(I0) -> f2#(I0 + 1) [I0 <= 10] 0.00/0.18 R = 0.00/0.18 init(x1) -> f1(rnd1) 0.00/0.18 f2(I0) -> f2(I0 + 1) [I0 <= 10] 0.00/0.18 f1(I1) -> f2(0) 0.00/0.18 0.00/0.18 We use the reverse value criterion with the projection function NU: 0.00/0.18 NU[f2#(z1)] = 10 + -1 * z1 0.00/0.18 0.00/0.18 This gives the following inequalities: 0.00/0.18 I0 <= 10 ==> 10 + -1 * I0 > 10 + -1 * (I0 + 1) with 10 + -1 * I0 >= 0 0.00/0.18 0.00/0.18 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.16 EOF