0.65/0.74 MAYBE 0.65/0.74 0.65/0.74 DP problem for innermost termination. 0.65/0.74 P = 0.65/0.74 init#(x1, x2, x3) -> f1#(rnd1, rnd2, rnd3) 0.65/0.74 f3#(I0, I1, I2) -> f3#(I3, I4, I5) [-1 <= I3 - 1 /\ 0 <= I0 - 1 /\ I3 + 1 <= I0] 0.65/0.74 f2#(I6, I7, I8) -> f3#(I9, I10, I11) [-1 <= I9 - 1 /\ 0 <= I6 - 1 /\ I8 <= 0 /\ I9 + 1 <= I6] 0.65/0.74 f2#(I12, I13, I14) -> f2#(I15, I13 - 1, I13) [3 <= I15 - 1 /\ 0 <= I12 - 1 /\ 0 <= I14 - 1 /\ I15 - 3 <= I12] 0.65/0.74 f1#(I16, I17, I18) -> f2#(I19, 27, 28) [0 <= I19 - 1] 0.65/0.74 R = 0.65/0.74 init(x1, x2, x3) -> f1(rnd1, rnd2, rnd3) 0.65/0.74 f3(I0, I1, I2) -> f3(I3, I4, I5) [-1 <= I3 - 1 /\ 0 <= I0 - 1 /\ I3 + 1 <= I0] 0.65/0.74 f2(I6, I7, I8) -> f3(I9, I10, I11) [-1 <= I9 - 1 /\ 0 <= I6 - 1 /\ I8 <= 0 /\ I9 + 1 <= I6] 0.65/0.74 f2(I12, I13, I14) -> f2(I15, I13 - 1, I13) [3 <= I15 - 1 /\ 0 <= I12 - 1 /\ 0 <= I14 - 1 /\ I15 - 3 <= I12] 0.65/0.74 f1(I16, I17, I18) -> f2(I19, 27, 28) [0 <= I19 - 1] 0.65/0.74 0.65/0.74 The dependency graph for this problem is: 0.65/0.74 0 -> 4 0.65/0.74 1 -> 1 0.65/0.74 2 -> 1 0.65/0.74 3 -> 2, 3 0.65/0.74 4 -> 3 0.65/0.74 Where: 0.65/0.74 0) init#(x1, x2, x3) -> f1#(rnd1, rnd2, rnd3) 0.65/0.74 1) f3#(I0, I1, I2) -> f3#(I3, I4, I5) [-1 <= I3 - 1 /\ 0 <= I0 - 1 /\ I3 + 1 <= I0] 0.65/0.74 2) f2#(I6, I7, I8) -> f3#(I9, I10, I11) [-1 <= I9 - 1 /\ 0 <= I6 - 1 /\ I8 <= 0 /\ I9 + 1 <= I6] 0.65/0.74 3) f2#(I12, I13, I14) -> f2#(I15, I13 - 1, I13) [3 <= I15 - 1 /\ 0 <= I12 - 1 /\ 0 <= I14 - 1 /\ I15 - 3 <= I12] 0.65/0.74 4) f1#(I16, I17, I18) -> f2#(I19, 27, 28) [0 <= I19 - 1] 0.65/0.74 0.65/0.74 We have the following SCCs. 0.65/0.74 { 3 } 0.65/0.74 { 1 } 0.65/0.74 0.65/0.74 DP problem for innermost termination. 0.65/0.74 P = 0.65/0.74 f3#(I0, I1, I2) -> f3#(I3, I4, I5) [-1 <= I3 - 1 /\ 0 <= I0 - 1 /\ I3 + 1 <= I0] 0.65/0.74 R = 0.65/0.74 init(x1, x2, x3) -> f1(rnd1, rnd2, rnd3) 0.65/0.74 f3(I0, I1, I2) -> f3(I3, I4, I5) [-1 <= I3 - 1 /\ 0 <= I0 - 1 /\ I3 + 1 <= I0] 0.65/0.74 f2(I6, I7, I8) -> f3(I9, I10, I11) [-1 <= I9 - 1 /\ 0 <= I6 - 1 /\ I8 <= 0 /\ I9 + 1 <= I6] 0.65/0.74 f2(I12, I13, I14) -> f2(I15, I13 - 1, I13) [3 <= I15 - 1 /\ 0 <= I12 - 1 /\ 0 <= I14 - 1 /\ I15 - 3 <= I12] 0.65/0.74 f1(I16, I17, I18) -> f2(I19, 27, 28) [0 <= I19 - 1] 0.65/0.74 0.65/0.74 We use the basic value criterion with the projection function NU: 0.65/0.74 NU[f3#(z1,z2,z3)] = z1 0.65/0.74 0.65/0.74 This gives the following inequalities: 0.65/0.74 -1 <= I3 - 1 /\ 0 <= I0 - 1 /\ I3 + 1 <= I0 ==> I0 >! I3 0.65/0.74 0.65/0.74 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.65/0.74 0.65/0.74 DP problem for innermost termination. 0.65/0.74 P = 0.65/0.74 f2#(I12, I13, I14) -> f2#(I15, I13 - 1, I13) [3 <= I15 - 1 /\ 0 <= I12 - 1 /\ 0 <= I14 - 1 /\ I15 - 3 <= I12] 0.65/0.74 R = 0.65/0.74 init(x1, x2, x3) -> f1(rnd1, rnd2, rnd3) 0.65/0.74 f3(I0, I1, I2) -> f3(I3, I4, I5) [-1 <= I3 - 1 /\ 0 <= I0 - 1 /\ I3 + 1 <= I0] 0.65/0.74 f2(I6, I7, I8) -> f3(I9, I10, I11) [-1 <= I9 - 1 /\ 0 <= I6 - 1 /\ I8 <= 0 /\ I9 + 1 <= I6] 0.65/0.74 f2(I12, I13, I14) -> f2(I15, I13 - 1, I13) [3 <= I15 - 1 /\ 0 <= I12 - 1 /\ 0 <= I14 - 1 /\ I15 - 3 <= I12] 0.65/0.74 f1(I16, I17, I18) -> f2(I19, 27, 28) [0 <= I19 - 1] 0.65/0.74 0.65/3.72 EOF