1.93/1.99 YES 1.93/1.99 1.93/1.99 DP problem for innermost termination. 1.93/1.99 P = 1.93/1.99 init#(x1, x2) -> f1#(rnd1, rnd2) 1.93/1.99 f3#(I0, I1) -> f3#(I0, I1 + 1) [I1 <= 11] 1.93/1.99 f3#(I2, I3) -> f2#(I2 + 1, I4) [11 <= I3 - 1] 1.93/1.99 f2#(I5, I6) -> f3#(I5, 3) [I5 <= 9] 1.93/1.99 f1#(I7, I8) -> f2#(0, I9) 1.93/1.99 R = 1.93/1.99 init(x1, x2) -> f1(rnd1, rnd2) 1.93/1.99 f3(I0, I1) -> f3(I0, I1 + 1) [I1 <= 11] 1.93/1.99 f3(I2, I3) -> f2(I2 + 1, I4) [11 <= I3 - 1] 1.93/1.99 f2(I5, I6) -> f3(I5, 3) [I5 <= 9] 1.93/1.99 f1(I7, I8) -> f2(0, I9) 1.93/1.99 1.93/1.99 The dependency graph for this problem is: 1.93/1.99 0 -> 4 1.93/1.99 1 -> 1, 2 1.93/1.99 2 -> 3 1.93/1.99 3 -> 1 1.93/1.99 4 -> 3 1.93/1.99 Where: 1.93/1.99 0) init#(x1, x2) -> f1#(rnd1, rnd2) 1.93/1.99 1) f3#(I0, I1) -> f3#(I0, I1 + 1) [I1 <= 11] 1.93/1.99 2) f3#(I2, I3) -> f2#(I2 + 1, I4) [11 <= I3 - 1] 1.93/1.99 3) f2#(I5, I6) -> f3#(I5, 3) [I5 <= 9] 1.93/1.99 4) f1#(I7, I8) -> f2#(0, I9) 1.93/1.99 1.93/1.99 We have the following SCCs. 1.93/1.99 { 1, 2, 3 } 1.93/1.99 1.93/1.99 DP problem for innermost termination. 1.93/1.99 P = 1.93/1.99 f3#(I0, I1) -> f3#(I0, I1 + 1) [I1 <= 11] 1.93/1.99 f3#(I2, I3) -> f2#(I2 + 1, I4) [11 <= I3 - 1] 1.93/1.99 f2#(I5, I6) -> f3#(I5, 3) [I5 <= 9] 1.93/1.99 R = 1.93/1.99 init(x1, x2) -> f1(rnd1, rnd2) 1.93/1.99 f3(I0, I1) -> f3(I0, I1 + 1) [I1 <= 11] 1.93/1.99 f3(I2, I3) -> f2(I2 + 1, I4) [11 <= I3 - 1] 1.93/1.99 f2(I5, I6) -> f3(I5, 3) [I5 <= 9] 1.93/1.99 f1(I7, I8) -> f2(0, I9) 1.93/1.99 1.93/1.99 We use the reverse value criterion with the projection function NU: 1.93/1.99 NU[f2#(z1,z2)] = 9 + -1 * z1 1.93/1.99 NU[f3#(z1,z2)] = 9 + -1 * (z1 + 1) 1.93/1.99 1.93/1.99 This gives the following inequalities: 1.93/1.99 I1 <= 11 ==> 9 + -1 * (I0 + 1) >= 9 + -1 * (I0 + 1) 1.93/1.99 11 <= I3 - 1 ==> 9 + -1 * (I2 + 1) >= 9 + -1 * (I2 + 1) 1.93/1.99 I5 <= 9 ==> 9 + -1 * I5 > 9 + -1 * (I5 + 1) with 9 + -1 * I5 >= 0 1.93/1.99 1.93/1.99 We remove all the strictly oriented dependency pairs. 1.93/1.99 1.93/1.99 DP problem for innermost termination. 1.93/1.99 P = 1.93/1.99 f3#(I0, I1) -> f3#(I0, I1 + 1) [I1 <= 11] 1.93/1.99 f3#(I2, I3) -> f2#(I2 + 1, I4) [11 <= I3 - 1] 1.93/1.99 R = 1.93/1.99 init(x1, x2) -> f1(rnd1, rnd2) 1.93/1.99 f3(I0, I1) -> f3(I0, I1 + 1) [I1 <= 11] 1.93/1.99 f3(I2, I3) -> f2(I2 + 1, I4) [11 <= I3 - 1] 1.93/1.99 f2(I5, I6) -> f3(I5, 3) [I5 <= 9] 1.93/1.99 f1(I7, I8) -> f2(0, I9) 1.93/1.99 1.93/1.99 The dependency graph for this problem is: 1.93/1.99 1 -> 1, 2 1.93/1.99 2 -> 1.93/1.99 Where: 1.93/1.99 1) f3#(I0, I1) -> f3#(I0, I1 + 1) [I1 <= 11] 1.93/1.99 2) f3#(I2, I3) -> f2#(I2 + 1, I4) [11 <= I3 - 1] 1.93/1.99 1.93/1.99 We have the following SCCs. 1.93/1.99 { 1 } 1.93/1.99 1.93/1.99 DP problem for innermost termination. 1.93/1.99 P = 1.93/1.99 f3#(I0, I1) -> f3#(I0, I1 + 1) [I1 <= 11] 1.93/1.99 R = 1.93/1.99 init(x1, x2) -> f1(rnd1, rnd2) 1.93/1.99 f3(I0, I1) -> f3(I0, I1 + 1) [I1 <= 11] 1.93/1.99 f3(I2, I3) -> f2(I2 + 1, I4) [11 <= I3 - 1] 1.93/1.99 f2(I5, I6) -> f3(I5, 3) [I5 <= 9] 1.93/1.99 f1(I7, I8) -> f2(0, I9) 1.93/1.99 1.93/1.99 We use the reverse value criterion with the projection function NU: 1.93/1.99 NU[f3#(z1,z2)] = 11 + -1 * z2 1.93/1.99 1.93/1.99 This gives the following inequalities: 1.93/1.99 I1 <= 11 ==> 11 + -1 * I1 > 11 + -1 * (I1 + 1) with 11 + -1 * I1 >= 0 1.93/1.99 1.93/1.99 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 1.93/4.97 EOF