0.00/0.24 YES 0.00/0.24 0.00/0.24 DP problem for innermost termination. 0.00/0.24 P = 0.00/0.24 init#(x1, x2, x3) -> f1#(rnd1, rnd2, rnd3) 0.00/0.24 f2#(I0, I1, I2) -> f2#(I3, I1 + 10, I2 - 1) [I2 + 4 <= I0 /\ 2 <= I3 - 1 /\ 2 <= I0 - 1 /\ I3 <= I0 /\ 0 <= I2 - 1 /\ -1 <= I1 - 1] 0.00/0.24 f1#(I4, I5, I6) -> f2#(I7, 0, 10) [13 <= I7 - 1] 0.00/0.24 R = 0.00/0.24 init(x1, x2, x3) -> f1(rnd1, rnd2, rnd3) 0.00/0.24 f2(I0, I1, I2) -> f2(I3, I1 + 10, I2 - 1) [I2 + 4 <= I0 /\ 2 <= I3 - 1 /\ 2 <= I0 - 1 /\ I3 <= I0 /\ 0 <= I2 - 1 /\ -1 <= I1 - 1] 0.00/0.24 f1(I4, I5, I6) -> f2(I7, 0, 10) [13 <= I7 - 1] 0.00/0.24 0.00/0.24 The dependency graph for this problem is: 0.00/0.24 0 -> 2 0.00/0.24 1 -> 1 0.00/0.24 2 -> 1 0.00/0.24 Where: 0.00/0.24 0) init#(x1, x2, x3) -> f1#(rnd1, rnd2, rnd3) 0.00/0.24 1) f2#(I0, I1, I2) -> f2#(I3, I1 + 10, I2 - 1) [I2 + 4 <= I0 /\ 2 <= I3 - 1 /\ 2 <= I0 - 1 /\ I3 <= I0 /\ 0 <= I2 - 1 /\ -1 <= I1 - 1] 0.00/0.24 2) f1#(I4, I5, I6) -> f2#(I7, 0, 10) [13 <= I7 - 1] 0.00/0.24 0.00/0.24 We have the following SCCs. 0.00/0.24 { 1 } 0.00/0.24 0.00/0.24 DP problem for innermost termination. 0.00/0.24 P = 0.00/0.24 f2#(I0, I1, I2) -> f2#(I3, I1 + 10, I2 - 1) [I2 + 4 <= I0 /\ 2 <= I3 - 1 /\ 2 <= I0 - 1 /\ I3 <= I0 /\ 0 <= I2 - 1 /\ -1 <= I1 - 1] 0.00/0.24 R = 0.00/0.24 init(x1, x2, x3) -> f1(rnd1, rnd2, rnd3) 0.00/0.24 f2(I0, I1, I2) -> f2(I3, I1 + 10, I2 - 1) [I2 + 4 <= I0 /\ 2 <= I3 - 1 /\ 2 <= I0 - 1 /\ I3 <= I0 /\ 0 <= I2 - 1 /\ -1 <= I1 - 1] 0.00/0.24 f1(I4, I5, I6) -> f2(I7, 0, 10) [13 <= I7 - 1] 0.00/0.24 0.00/0.24 We use the basic value criterion with the projection function NU: 0.00/0.24 NU[f2#(z1,z2,z3)] = z3 0.00/0.24 0.00/0.24 This gives the following inequalities: 0.00/0.24 I2 + 4 <= I0 /\ 2 <= I3 - 1 /\ 2 <= I0 - 1 /\ I3 <= I0 /\ 0 <= I2 - 1 /\ -1 <= I1 - 1 ==> I2 >! I2 - 1 0.00/0.24 0.00/0.24 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.22 EOF