0.00/0.36 YES 0.00/0.36 0.00/0.36 DP problem for innermost termination. 0.00/0.36 P = 0.00/0.36 init#(x1, x2) -> f1#(rnd1, rnd2) 0.00/0.36 f4#(I0, I1) -> f4#(I0, I1 - 1) [0 <= I1 - 1] 0.00/0.36 f4#(I2, I3) -> f2#(I2, 0) [0 = I3] 0.00/0.36 f3#(I4, I5) -> f3#(I4, I5 - 1) [0 <= I5 - 1] 0.00/0.36 f3#(I6, I7) -> f2#(0, I6) [0 = I7] 0.00/0.36 f2#(I8, I9) -> f4#(I8, I9) [0 <= I8 - 1 /\ 0 <= I9 - 1 /\ I8 <= I9 - 1] 0.00/0.36 f2#(I10, I11) -> f3#(I11, I10) [0 <= I10 - 1 /\ 0 <= I11 - 1 /\ I11 <= I10] 0.00/0.36 f1#(I12, I13) -> f2#(I14, I15) [0 <= I12 - 1 /\ -1 <= I15 - 1 /\ -1 <= I13 - 1 /\ -1 <= I14 - 1] 0.00/0.36 R = 0.00/0.36 init(x1, x2) -> f1(rnd1, rnd2) 0.00/0.36 f4(I0, I1) -> f4(I0, I1 - 1) [0 <= I1 - 1] 0.00/0.36 f4(I2, I3) -> f2(I2, 0) [0 = I3] 0.00/0.36 f3(I4, I5) -> f3(I4, I5 - 1) [0 <= I5 - 1] 0.00/0.36 f3(I6, I7) -> f2(0, I6) [0 = I7] 0.00/0.36 f2(I8, I9) -> f4(I8, I9) [0 <= I8 - 1 /\ 0 <= I9 - 1 /\ I8 <= I9 - 1] 0.00/0.36 f2(I10, I11) -> f3(I11, I10) [0 <= I10 - 1 /\ 0 <= I11 - 1 /\ I11 <= I10] 0.00/0.36 f1(I12, I13) -> f2(I14, I15) [0 <= I12 - 1 /\ -1 <= I15 - 1 /\ -1 <= I13 - 1 /\ -1 <= I14 - 1] 0.00/0.36 0.00/0.36 The dependency graph for this problem is: 0.00/0.36 0 -> 7 0.00/0.36 1 -> 1, 2 0.00/0.36 2 -> 0.00/0.36 3 -> 3, 4 0.00/0.36 4 -> 0.00/0.36 5 -> 1 0.00/0.36 6 -> 3 0.00/0.36 7 -> 5, 6 0.00/0.36 Where: 0.00/0.36 0) init#(x1, x2) -> f1#(rnd1, rnd2) 0.00/0.36 1) f4#(I0, I1) -> f4#(I0, I1 - 1) [0 <= I1 - 1] 0.00/0.36 2) f4#(I2, I3) -> f2#(I2, 0) [0 = I3] 0.00/0.36 3) f3#(I4, I5) -> f3#(I4, I5 - 1) [0 <= I5 - 1] 0.00/0.36 4) f3#(I6, I7) -> f2#(0, I6) [0 = I7] 0.00/0.36 5) f2#(I8, I9) -> f4#(I8, I9) [0 <= I8 - 1 /\ 0 <= I9 - 1 /\ I8 <= I9 - 1] 0.00/0.36 6) f2#(I10, I11) -> f3#(I11, I10) [0 <= I10 - 1 /\ 0 <= I11 - 1 /\ I11 <= I10] 0.00/0.36 7) f1#(I12, I13) -> f2#(I14, I15) [0 <= I12 - 1 /\ -1 <= I15 - 1 /\ -1 <= I13 - 1 /\ -1 <= I14 - 1] 0.00/0.36 0.00/0.36 We have the following SCCs. 0.00/0.36 { 3 } 0.00/0.36 { 1 } 0.00/0.36 0.00/0.36 DP problem for innermost termination. 0.00/0.36 P = 0.00/0.36 f4#(I0, I1) -> f4#(I0, I1 - 1) [0 <= I1 - 1] 0.00/0.36 R = 0.00/0.36 init(x1, x2) -> f1(rnd1, rnd2) 0.00/0.36 f4(I0, I1) -> f4(I0, I1 - 1) [0 <= I1 - 1] 0.00/0.36 f4(I2, I3) -> f2(I2, 0) [0 = I3] 0.00/0.36 f3(I4, I5) -> f3(I4, I5 - 1) [0 <= I5 - 1] 0.00/0.36 f3(I6, I7) -> f2(0, I6) [0 = I7] 0.00/0.36 f2(I8, I9) -> f4(I8, I9) [0 <= I8 - 1 /\ 0 <= I9 - 1 /\ I8 <= I9 - 1] 0.00/0.36 f2(I10, I11) -> f3(I11, I10) [0 <= I10 - 1 /\ 0 <= I11 - 1 /\ I11 <= I10] 0.00/0.36 f1(I12, I13) -> f2(I14, I15) [0 <= I12 - 1 /\ -1 <= I15 - 1 /\ -1 <= I13 - 1 /\ -1 <= I14 - 1] 0.00/0.36 0.00/0.36 We use the basic value criterion with the projection function NU: 0.00/0.36 NU[f4#(z1,z2)] = z2 0.00/0.36 0.00/0.36 This gives the following inequalities: 0.00/0.36 0 <= I1 - 1 ==> I1 >! I1 - 1 0.00/0.36 0.00/0.36 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/0.36 0.00/0.36 DP problem for innermost termination. 0.00/0.36 P = 0.00/0.36 f3#(I4, I5) -> f3#(I4, I5 - 1) [0 <= I5 - 1] 0.00/0.36 R = 0.00/0.36 init(x1, x2) -> f1(rnd1, rnd2) 0.00/0.36 f4(I0, I1) -> f4(I0, I1 - 1) [0 <= I1 - 1] 0.00/0.36 f4(I2, I3) -> f2(I2, 0) [0 = I3] 0.00/0.36 f3(I4, I5) -> f3(I4, I5 - 1) [0 <= I5 - 1] 0.00/0.36 f3(I6, I7) -> f2(0, I6) [0 = I7] 0.00/0.36 f2(I8, I9) -> f4(I8, I9) [0 <= I8 - 1 /\ 0 <= I9 - 1 /\ I8 <= I9 - 1] 0.00/0.36 f2(I10, I11) -> f3(I11, I10) [0 <= I10 - 1 /\ 0 <= I11 - 1 /\ I11 <= I10] 0.00/0.36 f1(I12, I13) -> f2(I14, I15) [0 <= I12 - 1 /\ -1 <= I15 - 1 /\ -1 <= I13 - 1 /\ -1 <= I14 - 1] 0.00/0.36 0.00/0.36 We use the basic value criterion with the projection function NU: 0.00/0.36 NU[f3#(z1,z2)] = z2 0.00/0.36 0.00/0.36 This gives the following inequalities: 0.00/0.36 0 <= I5 - 1 ==> I5 >! I5 - 1 0.00/0.36 0.00/0.36 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.34 EOF