0.00/0.36 YES 0.00/0.36 0.00/0.36 DP problem for innermost termination. 0.00/0.36 P = 0.00/0.36 init#(x1, x2, x3) -> f1#(rnd1, rnd2, rnd3) 0.00/0.36 f2#(I0, I1, I2) -> f2#(I3, I1 - 1, I2 + 1) [-1 <= I2 - 1 /\ -1 <= I1 - 1 /\ -1 <= I3 - 1] 0.00/0.36 f2#(I4, I5, I6) -> f2#(I4 - 1, -1, I6) [-1 = I5 /\ -1 <= I4 - 1] 0.00/0.36 f1#(I7, I8, I9) -> f2#(I10, I11, 2) [0 <= I7 - 1 /\ -1 <= I11 - 1 /\ -1 <= I8 - 1 /\ -1 <= I10 - 1] 0.00/0.36 R = 0.00/0.36 init(x1, x2, x3) -> f1(rnd1, rnd2, rnd3) 0.00/0.36 f2(I0, I1, I2) -> f2(I3, I1 - 1, I2 + 1) [-1 <= I2 - 1 /\ -1 <= I1 - 1 /\ -1 <= I3 - 1] 0.00/0.36 f2(I4, I5, I6) -> f2(I4 - 1, -1, I6) [-1 = I5 /\ -1 <= I4 - 1] 0.00/0.36 f1(I7, I8, I9) -> f2(I10, I11, 2) [0 <= I7 - 1 /\ -1 <= I11 - 1 /\ -1 <= I8 - 1 /\ -1 <= I10 - 1] 0.00/0.36 0.00/0.36 The dependency graph for this problem is: 0.00/0.36 0 -> 3 0.00/0.36 1 -> 1, 2 0.00/0.36 2 -> 2 0.00/0.36 3 -> 1 0.00/0.36 Where: 0.00/0.36 0) init#(x1, x2, x3) -> f1#(rnd1, rnd2, rnd3) 0.00/0.36 1) f2#(I0, I1, I2) -> f2#(I3, I1 - 1, I2 + 1) [-1 <= I2 - 1 /\ -1 <= I1 - 1 /\ -1 <= I3 - 1] 0.00/0.36 2) f2#(I4, I5, I6) -> f2#(I4 - 1, -1, I6) [-1 = I5 /\ -1 <= I4 - 1] 0.00/0.36 3) f1#(I7, I8, I9) -> f2#(I10, I11, 2) [0 <= I7 - 1 /\ -1 <= I11 - 1 /\ -1 <= I8 - 1 /\ -1 <= I10 - 1] 0.00/0.36 0.00/0.36 We have the following SCCs. 0.00/0.36 { 1 } 0.00/0.36 { 2 } 0.00/0.36 0.00/0.36 DP problem for innermost termination. 0.00/0.36 P = 0.00/0.36 f2#(I4, I5, I6) -> f2#(I4 - 1, -1, I6) [-1 = I5 /\ -1 <= I4 - 1] 0.00/0.36 R = 0.00/0.36 init(x1, x2, x3) -> f1(rnd1, rnd2, rnd3) 0.00/0.36 f2(I0, I1, I2) -> f2(I3, I1 - 1, I2 + 1) [-1 <= I2 - 1 /\ -1 <= I1 - 1 /\ -1 <= I3 - 1] 0.00/0.36 f2(I4, I5, I6) -> f2(I4 - 1, -1, I6) [-1 = I5 /\ -1 <= I4 - 1] 0.00/0.36 f1(I7, I8, I9) -> f2(I10, I11, 2) [0 <= I7 - 1 /\ -1 <= I11 - 1 /\ -1 <= I8 - 1 /\ -1 <= I10 - 1] 0.00/0.36 0.00/0.36 We use the basic value criterion with the projection function NU: 0.00/0.36 NU[f2#(z1,z2,z3)] = z1 0.00/0.36 0.00/0.36 This gives the following inequalities: 0.00/0.36 -1 = I5 /\ -1 <= I4 - 1 ==> I4 >! I4 - 1 0.00/0.36 0.00/0.36 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/0.36 0.00/0.36 DP problem for innermost termination. 0.00/0.36 P = 0.00/0.36 f2#(I0, I1, I2) -> f2#(I3, I1 - 1, I2 + 1) [-1 <= I2 - 1 /\ -1 <= I1 - 1 /\ -1 <= I3 - 1] 0.00/0.36 R = 0.00/0.36 init(x1, x2, x3) -> f1(rnd1, rnd2, rnd3) 0.00/0.36 f2(I0, I1, I2) -> f2(I3, I1 - 1, I2 + 1) [-1 <= I2 - 1 /\ -1 <= I1 - 1 /\ -1 <= I3 - 1] 0.00/0.36 f2(I4, I5, I6) -> f2(I4 - 1, -1, I6) [-1 = I5 /\ -1 <= I4 - 1] 0.00/0.36 f1(I7, I8, I9) -> f2(I10, I11, 2) [0 <= I7 - 1 /\ -1 <= I11 - 1 /\ -1 <= I8 - 1 /\ -1 <= I10 - 1] 0.00/0.36 0.00/0.36 We use the basic value criterion with the projection function NU: 0.00/0.36 NU[f2#(z1,z2,z3)] = z2 0.00/0.36 0.00/0.36 This gives the following inequalities: 0.00/0.36 -1 <= I2 - 1 /\ -1 <= I1 - 1 /\ -1 <= I3 - 1 ==> I1 >! I1 - 1 0.00/0.36 0.00/0.36 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.34 EOF