0.00/0.14 YES 0.00/0.14 0.00/0.14 DP problem for innermost termination. 0.00/0.14 P = 0.00/0.14 init#(x1, x2) -> f1#(rnd1, rnd2) 0.00/0.14 f2#(I0, I1) -> f2#(I0, I1 - 1 - (I0 - 1)) [0 <= I0 - 1 /\ 0 <= I1 - 1] 0.00/0.14 f1#(I2, I3) -> f2#(I4, I5) [0 <= I5 - 1 /\ 1 <= I3 - 1 /\ -1 <= y1 - 1 /\ 0 <= I2 - 1 /\ y1 + 1 = I4] 0.00/0.14 R = 0.00/0.14 init(x1, x2) -> f1(rnd1, rnd2) 0.00/0.14 f2(I0, I1) -> f2(I0, I1 - 1 - (I0 - 1)) [0 <= I0 - 1 /\ 0 <= I1 - 1] 0.00/0.14 f1(I2, I3) -> f2(I4, I5) [0 <= I5 - 1 /\ 1 <= I3 - 1 /\ -1 <= y1 - 1 /\ 0 <= I2 - 1 /\ y1 + 1 = I4] 0.00/0.14 0.00/0.14 The dependency graph for this problem is: 0.00/0.14 0 -> 2 0.00/0.14 1 -> 1 0.00/0.14 2 -> 1 0.00/0.14 Where: 0.00/0.14 0) init#(x1, x2) -> f1#(rnd1, rnd2) 0.00/0.14 1) f2#(I0, I1) -> f2#(I0, I1 - 1 - (I0 - 1)) [0 <= I0 - 1 /\ 0 <= I1 - 1] 0.00/0.14 2) f1#(I2, I3) -> f2#(I4, I5) [0 <= I5 - 1 /\ 1 <= I3 - 1 /\ -1 <= y1 - 1 /\ 0 <= I2 - 1 /\ y1 + 1 = I4] 0.00/0.14 0.00/0.14 We have the following SCCs. 0.00/0.14 { 1 } 0.00/0.14 0.00/0.14 DP problem for innermost termination. 0.00/0.14 P = 0.00/0.14 f2#(I0, I1) -> f2#(I0, I1 - 1 - (I0 - 1)) [0 <= I0 - 1 /\ 0 <= I1 - 1] 0.00/0.14 R = 0.00/0.14 init(x1, x2) -> f1(rnd1, rnd2) 0.00/0.14 f2(I0, I1) -> f2(I0, I1 - 1 - (I0 - 1)) [0 <= I0 - 1 /\ 0 <= I1 - 1] 0.00/0.14 f1(I2, I3) -> f2(I4, I5) [0 <= I5 - 1 /\ 1 <= I3 - 1 /\ -1 <= y1 - 1 /\ 0 <= I2 - 1 /\ y1 + 1 = I4] 0.00/0.14 0.00/0.14 We use the basic value criterion with the projection function NU: 0.00/0.14 NU[f2#(z1,z2)] = z2 0.00/0.14 0.00/0.14 This gives the following inequalities: 0.00/0.14 0 <= I0 - 1 /\ 0 <= I1 - 1 ==> I1 >! I1 - 1 - (I0 - 1) 0.00/0.14 0.00/0.14 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.13 EOF