0.00/0.14 YES 0.00/0.14 0.00/0.14 DP problem for innermost termination. 0.00/0.14 P = 0.00/0.14 f4#(x1) -> f3#(x1) 0.00/0.14 f3#(I0) -> f1#(I0) [1 <= I0] 0.00/0.14 f2#(I1) -> f1#(I1) 0.00/0.14 f1#(I2) -> f2#(-1 + I2) [1 <= -1 + I2] 0.00/0.14 R = 0.00/0.14 f4(x1) -> f3(x1) 0.00/0.14 f3(I0) -> f1(I0) [1 <= I0] 0.00/0.14 f2(I1) -> f1(I1) 0.00/0.14 f1(I2) -> f2(-1 + I2) [1 <= -1 + I2] 0.00/0.14 0.00/0.14 The dependency graph for this problem is: 0.00/0.14 0 -> 1 0.00/0.14 1 -> 3 0.00/0.14 2 -> 3 0.00/0.14 3 -> 2 0.00/0.14 Where: 0.00/0.14 0) f4#(x1) -> f3#(x1) 0.00/0.14 1) f3#(I0) -> f1#(I0) [1 <= I0] 0.00/0.14 2) f2#(I1) -> f1#(I1) 0.00/0.14 3) f1#(I2) -> f2#(-1 + I2) [1 <= -1 + I2] 0.00/0.14 0.00/0.14 We have the following SCCs. 0.00/0.14 { 2, 3 } 0.00/0.14 0.00/0.14 DP problem for innermost termination. 0.00/0.14 P = 0.00/0.14 f2#(I1) -> f1#(I1) 0.00/0.14 f1#(I2) -> f2#(-1 + I2) [1 <= -1 + I2] 0.00/0.14 R = 0.00/0.14 f4(x1) -> f3(x1) 0.00/0.14 f3(I0) -> f1(I0) [1 <= I0] 0.00/0.14 f2(I1) -> f1(I1) 0.00/0.14 f1(I2) -> f2(-1 + I2) [1 <= -1 + I2] 0.00/0.14 0.00/0.14 We use the basic value criterion with the projection function NU: 0.00/0.14 NU[f1#(z1)] = z1 0.00/0.14 NU[f2#(z1)] = z1 0.00/0.14 0.00/0.14 This gives the following inequalities: 0.00/0.14 ==> I1 (>! \union =) I1 0.00/0.14 1 <= -1 + I2 ==> I2 >! -1 + I2 0.00/0.14 0.00/0.14 We remove all the strictly oriented dependency pairs. 0.00/0.14 0.00/0.14 DP problem for innermost termination. 0.00/0.14 P = 0.00/0.14 f2#(I1) -> f1#(I1) 0.00/0.14 R = 0.00/0.14 f4(x1) -> f3(x1) 0.00/0.14 f3(I0) -> f1(I0) [1 <= I0] 0.00/0.14 f2(I1) -> f1(I1) 0.00/0.14 f1(I2) -> f2(-1 + I2) [1 <= -1 + I2] 0.00/0.14 0.00/0.14 The dependency graph for this problem is: 0.00/0.14 2 -> 0.00/0.14 Where: 0.00/0.14 2) f2#(I1) -> f1#(I1) 0.00/0.14 0.00/0.14 We have the following SCCs. 0.00/0.14 0.00/3.12 EOF