0.00/0.48 YES 0.00/0.48 0.00/0.48 DP problem for innermost termination. 0.00/0.48 P = 0.00/0.48 f8#(x1) -> f7#(x1) 0.00/0.48 f7#(I0) -> f2#(0) 0.00/0.48 f2#(I1) -> f5#(I1) 0.00/0.48 f5#(I2) -> f4#(I2) [1 + I2 <= 42] 0.00/0.48 f4#(I4) -> f3#(I4) 0.00/0.48 f4#(I5) -> f1#(I5) 0.00/0.48 f4#(I6) -> f3#(I6) 0.00/0.48 f3#(I7) -> f1#(I7) 0.00/0.48 f1#(I8) -> f2#(1 + I8) 0.00/0.48 R = 0.00/0.48 f8(x1) -> f7(x1) 0.00/0.48 f7(I0) -> f2(0) 0.00/0.48 f2(I1) -> f5(I1) 0.00/0.48 f5(I2) -> f4(I2) [1 + I2 <= 42] 0.00/0.48 f5(I3) -> f6(I3) [42 <= I3] 0.00/0.48 f4(I4) -> f3(I4) 0.00/0.48 f4(I5) -> f1(I5) 0.00/0.48 f4(I6) -> f3(I6) 0.00/0.48 f3(I7) -> f1(I7) 0.00/0.48 f1(I8) -> f2(1 + I8) 0.00/0.48 0.00/0.48 The dependency graph for this problem is: 0.00/0.48 0 -> 1 0.00/0.48 1 -> 2 0.00/0.48 2 -> 3 0.00/0.48 3 -> 4, 5, 6 0.00/0.48 4 -> 7 0.00/0.48 5 -> 8 0.00/0.48 6 -> 7 0.00/0.48 7 -> 8 0.00/0.48 8 -> 2 0.00/0.48 Where: 0.00/0.48 0) f8#(x1) -> f7#(x1) 0.00/0.48 1) f7#(I0) -> f2#(0) 0.00/0.48 2) f2#(I1) -> f5#(I1) 0.00/0.48 3) f5#(I2) -> f4#(I2) [1 + I2 <= 42] 0.00/0.48 4) f4#(I4) -> f3#(I4) 0.00/0.48 5) f4#(I5) -> f1#(I5) 0.00/0.48 6) f4#(I6) -> f3#(I6) 0.00/0.48 7) f3#(I7) -> f1#(I7) 0.00/0.48 8) f1#(I8) -> f2#(1 + I8) 0.00/0.48 0.00/0.48 We have the following SCCs. 0.00/0.48 { 2, 3, 4, 5, 6, 7, 8 } 0.00/0.48 0.00/0.48 DP problem for innermost termination. 0.00/0.48 P = 0.00/0.48 f2#(I1) -> f5#(I1) 0.00/0.48 f5#(I2) -> f4#(I2) [1 + I2 <= 42] 0.00/0.48 f4#(I4) -> f3#(I4) 0.00/0.48 f4#(I5) -> f1#(I5) 0.00/0.48 f4#(I6) -> f3#(I6) 0.00/0.48 f3#(I7) -> f1#(I7) 0.00/0.48 f1#(I8) -> f2#(1 + I8) 0.00/0.48 R = 0.00/0.48 f8(x1) -> f7(x1) 0.00/0.48 f7(I0) -> f2(0) 0.00/0.48 f2(I1) -> f5(I1) 0.00/0.48 f5(I2) -> f4(I2) [1 + I2 <= 42] 0.00/0.48 f5(I3) -> f6(I3) [42 <= I3] 0.00/0.48 f4(I4) -> f3(I4) 0.00/0.48 f4(I5) -> f1(I5) 0.00/0.48 f4(I6) -> f3(I6) 0.00/0.48 f3(I7) -> f1(I7) 0.00/0.48 f1(I8) -> f2(1 + I8) 0.00/0.48 0.00/0.48 We use the extended value criterion with the projection function NU: 0.00/0.48 NU[f1#(x0)] = -x0 + 40 0.00/0.48 NU[f3#(x0)] = -x0 + 40 0.00/0.48 NU[f4#(x0)] = -x0 + 40 0.00/0.48 NU[f5#(x0)] = -x0 + 41 0.00/0.48 NU[f2#(x0)] = -x0 + 41 0.00/0.48 0.00/0.48 This gives the following inequalities: 0.00/0.48 ==> -I1 + 41 >= -I1 + 41 0.00/0.48 1 + I2 <= 42 ==> -I2 + 41 > -I2 + 40 with -I2 + 41 >= 0 0.00/0.48 ==> -I4 + 40 >= -I4 + 40 0.00/0.48 ==> -I5 + 40 >= -I5 + 40 0.00/0.48 ==> -I6 + 40 >= -I6 + 40 0.00/0.48 ==> -I7 + 40 >= -I7 + 40 0.00/0.48 ==> -I8 + 40 >= -(1 + I8) + 41 0.00/0.48 0.00/0.48 We remove all the strictly oriented dependency pairs. 0.00/0.48 0.00/0.48 DP problem for innermost termination. 0.00/0.48 P = 0.00/0.48 f2#(I1) -> f5#(I1) 0.00/0.48 f4#(I4) -> f3#(I4) 0.00/0.48 f4#(I5) -> f1#(I5) 0.00/0.48 f4#(I6) -> f3#(I6) 0.00/0.48 f3#(I7) -> f1#(I7) 0.00/0.48 f1#(I8) -> f2#(1 + I8) 0.00/0.48 R = 0.00/0.48 f8(x1) -> f7(x1) 0.00/0.48 f7(I0) -> f2(0) 0.00/0.48 f2(I1) -> f5(I1) 0.00/0.48 f5(I2) -> f4(I2) [1 + I2 <= 42] 0.00/0.48 f5(I3) -> f6(I3) [42 <= I3] 0.00/0.48 f4(I4) -> f3(I4) 0.00/0.48 f4(I5) -> f1(I5) 0.00/0.48 f4(I6) -> f3(I6) 0.00/0.48 f3(I7) -> f1(I7) 0.00/0.48 f1(I8) -> f2(1 + I8) 0.00/0.48 0.00/0.48 The dependency graph for this problem is: 0.00/0.48 2 -> 0.00/0.48 4 -> 7 0.00/0.48 5 -> 8 0.00/0.48 6 -> 7 0.00/0.48 7 -> 8 0.00/0.48 8 -> 2 0.00/0.48 Where: 0.00/0.48 2) f2#(I1) -> f5#(I1) 0.00/0.48 4) f4#(I4) -> f3#(I4) 0.00/0.48 5) f4#(I5) -> f1#(I5) 0.00/0.48 6) f4#(I6) -> f3#(I6) 0.00/0.48 7) f3#(I7) -> f1#(I7) 0.00/0.48 8) f1#(I8) -> f2#(1 + I8) 0.00/0.48 0.00/0.48 We have the following SCCs. 0.00/0.48 0.00/3.46 EOF