0.83/1.20 YES 0.83/1.20 0.83/1.20 DP problem for innermost termination. 0.83/1.20 P = 0.83/1.20 f7#(x1, x2) -> f6#(x1, x2) 0.83/1.20 f6#(I0, I1) -> f4#(I0, 0) 0.83/1.20 f4#(I4, I5) -> f3#(I4, I5) 0.83/1.20 f3#(I6, I7) -> f4#(I6, 1 + I7) [1 + I7 <= I6] 0.83/1.20 f3#(I8, I9) -> f1#(I8, I9) [I8 <= I9] 0.83/1.20 f1#(I10, I11) -> f2#(I10, I11) 0.83/1.20 f1#(I12, I13) -> f2#(I12, I13) 0.83/1.20 R = 0.83/1.20 f7(x1, x2) -> f6(x1, x2) 0.83/1.20 f6(I0, I1) -> f4(I0, 0) 0.83/1.20 f2(I2, I3) -> f5(I2, I3) 0.83/1.20 f4(I4, I5) -> f3(I4, I5) 0.83/1.20 f3(I6, I7) -> f4(I6, 1 + I7) [1 + I7 <= I6] 0.83/1.20 f3(I8, I9) -> f1(I8, I9) [I8 <= I9] 0.83/1.20 f1(I10, I11) -> f2(I10, I11) 0.83/1.20 f1(I12, I13) -> f2(I12, I13) 0.83/1.20 0.83/1.20 The dependency graph for this problem is: 0.83/1.20 0 -> 1 0.83/1.20 1 -> 2 0.83/1.20 2 -> 3, 4 0.83/1.20 3 -> 2 0.83/1.20 4 -> 5, 6 0.83/1.20 5 -> 0.83/1.20 6 -> 0.83/1.20 Where: 0.83/1.20 0) f7#(x1, x2) -> f6#(x1, x2) 0.83/1.20 1) f6#(I0, I1) -> f4#(I0, 0) 0.83/1.20 2) f4#(I4, I5) -> f3#(I4, I5) 0.83/1.20 3) f3#(I6, I7) -> f4#(I6, 1 + I7) [1 + I7 <= I6] 0.83/1.20 4) f3#(I8, I9) -> f1#(I8, I9) [I8 <= I9] 0.83/1.20 5) f1#(I10, I11) -> f2#(I10, I11) 0.83/1.20 6) f1#(I12, I13) -> f2#(I12, I13) 0.83/1.20 0.83/1.20 We have the following SCCs. 0.83/1.20 { 2, 3 } 0.83/1.20 0.83/1.20 DP problem for innermost termination. 0.83/1.20 P = 0.83/1.20 f4#(I4, I5) -> f3#(I4, I5) 0.83/1.20 f3#(I6, I7) -> f4#(I6, 1 + I7) [1 + I7 <= I6] 0.83/1.20 R = 0.83/1.20 f7(x1, x2) -> f6(x1, x2) 0.83/1.20 f6(I0, I1) -> f4(I0, 0) 0.83/1.20 f2(I2, I3) -> f5(I2, I3) 0.83/1.20 f4(I4, I5) -> f3(I4, I5) 0.83/1.20 f3(I6, I7) -> f4(I6, 1 + I7) [1 + I7 <= I6] 0.83/1.20 f3(I8, I9) -> f1(I8, I9) [I8 <= I9] 0.83/1.20 f1(I10, I11) -> f2(I10, I11) 0.83/1.20 f1(I12, I13) -> f2(I12, I13) 0.83/1.20 0.83/1.20 We use the reverse value criterion with the projection function NU: 0.83/1.20 NU[f3#(z1,z2)] = z1 + -1 * (1 + z2) 0.83/1.20 NU[f4#(z1,z2)] = z1 + -1 * (1 + z2) 0.83/1.20 0.83/1.20 This gives the following inequalities: 0.83/1.20 ==> I4 + -1 * (1 + I5) >= I4 + -1 * (1 + I5) 0.83/1.20 1 + I7 <= I6 ==> I6 + -1 * (1 + I7) > I6 + -1 * (1 + (1 + I7)) with I6 + -1 * (1 + I7) >= 0 0.83/1.20 0.83/1.20 We remove all the strictly oriented dependency pairs. 0.83/1.20 0.83/1.20 DP problem for innermost termination. 0.83/1.20 P = 0.83/1.20 f4#(I4, I5) -> f3#(I4, I5) 0.83/1.20 R = 0.83/1.20 f7(x1, x2) -> f6(x1, x2) 0.83/1.20 f6(I0, I1) -> f4(I0, 0) 0.83/1.20 f2(I2, I3) -> f5(I2, I3) 0.83/1.20 f4(I4, I5) -> f3(I4, I5) 0.83/1.20 f3(I6, I7) -> f4(I6, 1 + I7) [1 + I7 <= I6] 0.83/1.20 f3(I8, I9) -> f1(I8, I9) [I8 <= I9] 0.83/1.20 f1(I10, I11) -> f2(I10, I11) 0.83/1.20 f1(I12, I13) -> f2(I12, I13) 0.83/1.20 0.83/1.20 The dependency graph for this problem is: 0.83/1.20 2 -> 0.83/1.20 Where: 0.83/1.20 2) f4#(I4, I5) -> f3#(I4, I5) 0.83/1.20 0.83/1.20 We have the following SCCs. 0.83/1.20 0.83/4.18 EOF