2.39/2.41 YES 2.39/2.41 2.39/2.41 DP problem for innermost termination. 2.39/2.41 P = 2.39/2.41 f5#(x1, x2, x3, x4, x5) -> f4#(x1, x2, x3, x4, x5) 2.39/2.41 f4#(I0, I1, I2, I3, I4) -> f1#(I0, I1, I2, 1000, I4) 2.39/2.41 f3#(I5, I6, I7, I8, I9) -> f1#(I5, I6, I7, I8, I9) 2.39/2.41 f1#(I10, I11, I12, I13, I14) -> f3#(I10, I11, I12, -1 + I13, I14) [0 <= -101 + I13 /\ 0 <= 9 - I14] 2.39/2.41 R = 2.39/2.41 f5(x1, x2, x3, x4, x5) -> f4(x1, x2, x3, x4, x5) 2.39/2.41 f4(I0, I1, I2, I3, I4) -> f1(I0, I1, I2, 1000, I4) 2.39/2.41 f3(I5, I6, I7, I8, I9) -> f1(I5, I6, I7, I8, I9) 2.39/2.41 f1(I10, I11, I12, I13, I14) -> f3(I10, I11, I12, -1 + I13, I14) [0 <= -101 + I13 /\ 0 <= 9 - I14] 2.39/2.41 f1(I15, I16, I17, I18, I19) -> f2(rnd1, rnd2, 0, I18, I19) [rnd1 = rnd2 /\ rnd2 = 0 /\ -100 + I18 <= 0 /\ 0 <= 9 - I19] 2.39/2.41 f1(I20, I21, I22, I23, I24) -> f2(I25, I26, 0, I23, I24) [I25 = I26 /\ I26 = 0 /\ 10 - I24 <= 0] 2.39/2.41 2.39/2.41 The dependency graph for this problem is: 2.39/2.41 0 -> 1 2.39/2.41 1 -> 3 2.39/2.41 2 -> 3 2.39/2.41 3 -> 2 2.39/2.41 Where: 2.39/2.41 0) f5#(x1, x2, x3, x4, x5) -> f4#(x1, x2, x3, x4, x5) 2.39/2.41 1) f4#(I0, I1, I2, I3, I4) -> f1#(I0, I1, I2, 1000, I4) 2.39/2.41 2) f3#(I5, I6, I7, I8, I9) -> f1#(I5, I6, I7, I8, I9) 2.39/2.41 3) f1#(I10, I11, I12, I13, I14) -> f3#(I10, I11, I12, -1 + I13, I14) [0 <= -101 + I13 /\ 0 <= 9 - I14] 2.39/2.41 2.39/2.41 We have the following SCCs. 2.39/2.41 { 2, 3 } 2.39/2.41 2.39/2.41 DP problem for innermost termination. 2.39/2.41 P = 2.39/2.41 f3#(I5, I6, I7, I8, I9) -> f1#(I5, I6, I7, I8, I9) 2.39/2.41 f1#(I10, I11, I12, I13, I14) -> f3#(I10, I11, I12, -1 + I13, I14) [0 <= -101 + I13 /\ 0 <= 9 - I14] 2.39/2.41 R = 2.39/2.41 f5(x1, x2, x3, x4, x5) -> f4(x1, x2, x3, x4, x5) 2.39/2.41 f4(I0, I1, I2, I3, I4) -> f1(I0, I1, I2, 1000, I4) 2.39/2.41 f3(I5, I6, I7, I8, I9) -> f1(I5, I6, I7, I8, I9) 2.39/2.41 f1(I10, I11, I12, I13, I14) -> f3(I10, I11, I12, -1 + I13, I14) [0 <= -101 + I13 /\ 0 <= 9 - I14] 2.39/2.41 f1(I15, I16, I17, I18, I19) -> f2(rnd1, rnd2, 0, I18, I19) [rnd1 = rnd2 /\ rnd2 = 0 /\ -100 + I18 <= 0 /\ 0 <= 9 - I19] 2.39/2.41 f1(I20, I21, I22, I23, I24) -> f2(I25, I26, 0, I23, I24) [I25 = I26 /\ I26 = 0 /\ 10 - I24 <= 0] 2.39/2.41 2.39/2.41 We use the basic value criterion with the projection function NU: 2.39/2.41 NU[f1#(z1,z2,z3,z4,z5)] = z4 2.39/2.41 NU[f3#(z1,z2,z3,z4,z5)] = z4 2.39/2.41 2.39/2.41 This gives the following inequalities: 2.39/2.41 ==> I8 (>! \union =) I8 2.39/2.41 0 <= -101 + I13 /\ 0 <= 9 - I14 ==> I13 >! -1 + I13 2.39/2.41 2.39/2.41 We remove all the strictly oriented dependency pairs. 2.39/2.41 2.39/2.41 DP problem for innermost termination. 2.39/2.41 P = 2.39/2.41 f3#(I5, I6, I7, I8, I9) -> f1#(I5, I6, I7, I8, I9) 2.39/2.41 R = 2.39/2.41 f5(x1, x2, x3, x4, x5) -> f4(x1, x2, x3, x4, x5) 2.39/2.41 f4(I0, I1, I2, I3, I4) -> f1(I0, I1, I2, 1000, I4) 2.39/2.41 f3(I5, I6, I7, I8, I9) -> f1(I5, I6, I7, I8, I9) 2.39/2.41 f1(I10, I11, I12, I13, I14) -> f3(I10, I11, I12, -1 + I13, I14) [0 <= -101 + I13 /\ 0 <= 9 - I14] 2.39/2.41 f1(I15, I16, I17, I18, I19) -> f2(rnd1, rnd2, 0, I18, I19) [rnd1 = rnd2 /\ rnd2 = 0 /\ -100 + I18 <= 0 /\ 0 <= 9 - I19] 2.39/2.41 f1(I20, I21, I22, I23, I24) -> f2(I25, I26, 0, I23, I24) [I25 = I26 /\ I26 = 0 /\ 10 - I24 <= 0] 2.39/2.41 2.39/2.41 The dependency graph for this problem is: 2.39/2.41 2 -> 2.39/2.41 Where: 2.39/2.41 2) f3#(I5, I6, I7, I8, I9) -> f1#(I5, I6, I7, I8, I9) 2.39/2.41 2.39/2.41 We have the following SCCs. 2.39/2.41 2.39/5.39 EOF