1.70/1.77 YES 1.70/1.77 1.70/1.77 DP problem for innermost termination. 1.70/1.77 P = 1.70/1.77 f9#(x1, x2) -> f8#(x1, x2) 1.70/1.77 f8#(I0, I1) -> f3#(0, I1) 1.70/1.77 f4#(I2, I3) -> f2#(I2, 1 + I3) [1 + I3 <= 2] 1.70/1.77 f4#(I4, I5) -> f7#(I4, I5) [2 <= I5] 1.70/1.77 f7#(I6, I7) -> f5#(I6, I7) 1.70/1.77 f7#(I8, I9) -> f5#(I8, I9) 1.70/1.77 f2#(I12, I13) -> f4#(I12, I13) 1.70/1.77 f3#(I14, I15) -> f1#(I14, I15) 1.70/1.77 f1#(I16, I17) -> f3#(1 + I16, I17) [1 + I16 <= 2] 1.70/1.77 f1#(I18, I19) -> f2#(I18, 0) [2 <= I18] 1.70/1.77 R = 1.70/1.77 f9(x1, x2) -> f8(x1, x2) 1.70/1.77 f8(I0, I1) -> f3(0, I1) 1.70/1.77 f4(I2, I3) -> f2(I2, 1 + I3) [1 + I3 <= 2] 1.70/1.77 f4(I4, I5) -> f7(I4, I5) [2 <= I5] 1.70/1.77 f7(I6, I7) -> f5(I6, I7) 1.70/1.77 f7(I8, I9) -> f5(I8, I9) 1.70/1.77 f5(I10, I11) -> f6(I10, I11) 1.70/1.77 f2(I12, I13) -> f4(I12, I13) 1.70/1.77 f3(I14, I15) -> f1(I14, I15) 1.70/1.77 f1(I16, I17) -> f3(1 + I16, I17) [1 + I16 <= 2] 1.70/1.77 f1(I18, I19) -> f2(I18, 0) [2 <= I18] 1.70/1.77 1.70/1.77 The dependency graph for this problem is: 1.70/1.77 0 -> 1 1.70/1.77 1 -> 7 1.70/1.77 2 -> 6 1.70/1.77 3 -> 4, 5 1.70/1.77 4 -> 1.70/1.77 5 -> 1.70/1.77 6 -> 2, 3 1.70/1.77 7 -> 8, 9 1.70/1.77 8 -> 7 1.70/1.77 9 -> 6 1.70/1.77 Where: 1.70/1.77 0) f9#(x1, x2) -> f8#(x1, x2) 1.70/1.77 1) f8#(I0, I1) -> f3#(0, I1) 1.70/1.77 2) f4#(I2, I3) -> f2#(I2, 1 + I3) [1 + I3 <= 2] 1.70/1.77 3) f4#(I4, I5) -> f7#(I4, I5) [2 <= I5] 1.70/1.77 4) f7#(I6, I7) -> f5#(I6, I7) 1.70/1.77 5) f7#(I8, I9) -> f5#(I8, I9) 1.70/1.77 6) f2#(I12, I13) -> f4#(I12, I13) 1.70/1.77 7) f3#(I14, I15) -> f1#(I14, I15) 1.70/1.77 8) f1#(I16, I17) -> f3#(1 + I16, I17) [1 + I16 <= 2] 1.70/1.77 9) f1#(I18, I19) -> f2#(I18, 0) [2 <= I18] 1.70/1.77 1.70/1.77 We have the following SCCs. 1.70/1.77 { 7, 8 } 1.70/1.77 { 2, 6 } 1.70/1.77 1.70/1.77 DP problem for innermost termination. 1.70/1.77 P = 1.70/1.77 f4#(I2, I3) -> f2#(I2, 1 + I3) [1 + I3 <= 2] 1.70/1.77 f2#(I12, I13) -> f4#(I12, I13) 1.70/1.77 R = 1.70/1.77 f9(x1, x2) -> f8(x1, x2) 1.70/1.77 f8(I0, I1) -> f3(0, I1) 1.70/1.77 f4(I2, I3) -> f2(I2, 1 + I3) [1 + I3 <= 2] 1.70/1.77 f4(I4, I5) -> f7(I4, I5) [2 <= I5] 1.70/1.77 f7(I6, I7) -> f5(I6, I7) 1.70/1.77 f7(I8, I9) -> f5(I8, I9) 1.70/1.77 f5(I10, I11) -> f6(I10, I11) 1.70/1.77 f2(I12, I13) -> f4(I12, I13) 1.70/1.77 f3(I14, I15) -> f1(I14, I15) 1.70/1.77 f1(I16, I17) -> f3(1 + I16, I17) [1 + I16 <= 2] 1.70/1.77 f1(I18, I19) -> f2(I18, 0) [2 <= I18] 1.70/1.77 1.70/1.77 We use the reverse value criterion with the projection function NU: 1.70/1.77 NU[f2#(z1,z2)] = 2 + -1 * (1 + z2) 1.70/1.77 NU[f4#(z1,z2)] = 2 + -1 * (1 + z2) 1.70/1.77 1.70/1.77 This gives the following inequalities: 1.70/1.77 1 + I3 <= 2 ==> 2 + -1 * (1 + I3) > 2 + -1 * (1 + (1 + I3)) with 2 + -1 * (1 + I3) >= 0 1.70/1.77 ==> 2 + -1 * (1 + I13) >= 2 + -1 * (1 + I13) 1.70/1.77 1.70/1.77 We remove all the strictly oriented dependency pairs. 1.70/1.77 1.70/1.77 DP problem for innermost termination. 1.70/1.77 P = 1.70/1.77 f2#(I12, I13) -> f4#(I12, I13) 1.70/1.77 R = 1.70/1.77 f9(x1, x2) -> f8(x1, x2) 1.70/1.77 f8(I0, I1) -> f3(0, I1) 1.70/1.77 f4(I2, I3) -> f2(I2, 1 + I3) [1 + I3 <= 2] 1.70/1.77 f4(I4, I5) -> f7(I4, I5) [2 <= I5] 1.70/1.77 f7(I6, I7) -> f5(I6, I7) 1.70/1.77 f7(I8, I9) -> f5(I8, I9) 1.70/1.77 f5(I10, I11) -> f6(I10, I11) 1.70/1.77 f2(I12, I13) -> f4(I12, I13) 1.70/1.77 f3(I14, I15) -> f1(I14, I15) 1.70/1.77 f1(I16, I17) -> f3(1 + I16, I17) [1 + I16 <= 2] 1.70/1.77 f1(I18, I19) -> f2(I18, 0) [2 <= I18] 1.70/1.77 1.70/1.77 The dependency graph for this problem is: 1.70/1.77 6 -> 1.70/1.77 Where: 1.70/1.77 6) f2#(I12, I13) -> f4#(I12, I13) 1.70/1.77 1.70/1.77 We have the following SCCs. 1.70/1.77 1.70/1.77 1.70/1.77 DP problem for innermost termination. 1.70/1.77 P = 1.70/1.77 f3#(I14, I15) -> f1#(I14, I15) 1.70/1.77 f1#(I16, I17) -> f3#(1 + I16, I17) [1 + I16 <= 2] 1.70/1.77 R = 1.70/1.77 f9(x1, x2) -> f8(x1, x2) 1.70/1.77 f8(I0, I1) -> f3(0, I1) 1.70/1.77 f4(I2, I3) -> f2(I2, 1 + I3) [1 + I3 <= 2] 1.70/1.77 f4(I4, I5) -> f7(I4, I5) [2 <= I5] 1.70/1.77 f7(I6, I7) -> f5(I6, I7) 1.70/1.77 f7(I8, I9) -> f5(I8, I9) 1.70/1.77 f5(I10, I11) -> f6(I10, I11) 1.70/1.77 f2(I12, I13) -> f4(I12, I13) 1.70/1.77 f3(I14, I15) -> f1(I14, I15) 1.70/1.77 f1(I16, I17) -> f3(1 + I16, I17) [1 + I16 <= 2] 1.70/1.77 f1(I18, I19) -> f2(I18, 0) [2 <= I18] 1.70/1.77 1.70/1.77 We use the reverse value criterion with the projection function NU: 1.70/1.77 NU[f1#(z1,z2)] = 2 + -1 * (1 + z1) 1.70/1.77 NU[f3#(z1,z2)] = 2 + -1 * (1 + z1) 1.70/1.77 1.70/1.77 This gives the following inequalities: 1.70/1.77 ==> 2 + -1 * (1 + I14) >= 2 + -1 * (1 + I14) 1.70/1.77 1 + I16 <= 2 ==> 2 + -1 * (1 + I16) > 2 + -1 * (1 + (1 + I16)) with 2 + -1 * (1 + I16) >= 0 1.70/1.77 1.70/1.77 We remove all the strictly oriented dependency pairs. 1.70/1.77 1.70/1.77 DP problem for innermost termination. 1.70/1.77 P = 1.70/1.77 f3#(I14, I15) -> f1#(I14, I15) 1.70/1.77 R = 1.70/1.77 f9(x1, x2) -> f8(x1, x2) 1.70/1.77 f8(I0, I1) -> f3(0, I1) 1.70/1.77 f4(I2, I3) -> f2(I2, 1 + I3) [1 + I3 <= 2] 1.70/1.77 f4(I4, I5) -> f7(I4, I5) [2 <= I5] 1.70/1.77 f7(I6, I7) -> f5(I6, I7) 1.70/1.77 f7(I8, I9) -> f5(I8, I9) 1.70/1.77 f5(I10, I11) -> f6(I10, I11) 1.70/1.77 f2(I12, I13) -> f4(I12, I13) 1.70/1.77 f3(I14, I15) -> f1(I14, I15) 1.70/1.77 f1(I16, I17) -> f3(1 + I16, I17) [1 + I16 <= 2] 1.70/1.77 f1(I18, I19) -> f2(I18, 0) [2 <= I18] 1.70/1.77 1.70/1.77 The dependency graph for this problem is: 1.70/1.77 7 -> 1.70/1.77 Where: 1.70/1.77 7) f3#(I14, I15) -> f1#(I14, I15) 1.70/1.77 1.70/1.77 We have the following SCCs. 1.70/1.77 1.70/4.75 EOF