21.50/21.20 YES 21.50/21.20 21.50/21.20 DP problem for innermost termination. 21.50/21.20 P = 21.50/21.20 f8#(x1, x2, x3, x4, x5) -> f7#(x1, x2, x3, x4, x5) 21.50/21.20 f7#(I0, I1, I2, I3, I4) -> f1#(I0, I1, I2, I3, I4) 21.50/21.20 f6#(I5, I6, I7, I8, I9) -> f1#(I5, I6, I7, I8, I9) 21.50/21.20 f1#(I10, I11, I12, I13, I14) -> f6#(I10, I11, I12, -1 * I11 + I13, 1 + I14) [-1 <= I14 /\ I14 <= -1 /\ 0 <= -1 - I13] 21.50/21.20 f5#(I15, I16, I17, I18, I19) -> f1#(I15, I16, I17, I18, I19) 21.50/21.20 f4#(I20, I21, I22, I23, I24) -> f5#(I20, I21, I22, 1 + I23, 1 + I24) 21.50/21.20 f3#(I25, I26, I27, I28, I29) -> f4#(I25, I26, I27, I28, I29) [I27 = I27] 21.50/21.20 f1#(I30, I31, I32, I33, I34) -> f3#(I30, I31, I32, I33, I34) [0 <= -1 - I33] 21.50/21.20 R = 21.50/21.20 f8(x1, x2, x3, x4, x5) -> f7(x1, x2, x3, x4, x5) 21.50/21.20 f7(I0, I1, I2, I3, I4) -> f1(I0, I1, I2, I3, I4) 21.50/21.20 f6(I5, I6, I7, I8, I9) -> f1(I5, I6, I7, I8, I9) 21.50/21.20 f1(I10, I11, I12, I13, I14) -> f6(I10, I11, I12, -1 * I11 + I13, 1 + I14) [-1 <= I14 /\ I14 <= -1 /\ 0 <= -1 - I13] 21.50/21.20 f5(I15, I16, I17, I18, I19) -> f1(I15, I16, I17, I18, I19) 21.50/21.20 f4(I20, I21, I22, I23, I24) -> f5(I20, I21, I22, 1 + I23, 1 + I24) 21.50/21.20 f3(I25, I26, I27, I28, I29) -> f4(I25, I26, I27, I28, I29) [I27 = I27] 21.50/21.20 f1(I30, I31, I32, I33, I34) -> f3(I30, I31, I32, I33, I34) [0 <= -1 - I33] 21.50/21.20 f1(I35, I36, I37, I38, I39) -> f2(rnd1, I36, I37, I38, I39) [rnd1 = rnd1 /\ -1 * I38 <= 0] 21.50/21.20 21.50/21.20 The dependency graph for this problem is: 21.50/21.20 0 -> 1 21.50/21.20 1 -> 3, 7 21.50/21.20 2 -> 3, 7 21.50/21.20 3 -> 2 21.50/21.20 4 -> 3, 7 21.50/21.20 5 -> 4 21.50/21.20 6 -> 5 21.50/21.20 7 -> 6 21.50/21.20 Where: 21.50/21.20 0) f8#(x1, x2, x3, x4, x5) -> f7#(x1, x2, x3, x4, x5) 21.50/21.20 1) f7#(I0, I1, I2, I3, I4) -> f1#(I0, I1, I2, I3, I4) 21.50/21.20 2) f6#(I5, I6, I7, I8, I9) -> f1#(I5, I6, I7, I8, I9) 21.50/21.20 3) f1#(I10, I11, I12, I13, I14) -> f6#(I10, I11, I12, -1 * I11 + I13, 1 + I14) [-1 <= I14 /\ I14 <= -1 /\ 0 <= -1 - I13] 21.50/21.20 4) f5#(I15, I16, I17, I18, I19) -> f1#(I15, I16, I17, I18, I19) 21.50/21.20 5) f4#(I20, I21, I22, I23, I24) -> f5#(I20, I21, I22, 1 + I23, 1 + I24) 21.50/21.20 6) f3#(I25, I26, I27, I28, I29) -> f4#(I25, I26, I27, I28, I29) [I27 = I27] 21.50/21.20 7) f1#(I30, I31, I32, I33, I34) -> f3#(I30, I31, I32, I33, I34) [0 <= -1 - I33] 21.50/21.20 21.50/21.20 We have the following SCCs. 21.50/21.20 { 2, 3, 4, 5, 6, 7 } 21.50/21.20 21.50/21.20 DP problem for innermost termination. 21.50/21.20 P = 21.50/21.20 f6#(I5, I6, I7, I8, I9) -> f1#(I5, I6, I7, I8, I9) 21.50/21.20 f1#(I10, I11, I12, I13, I14) -> f6#(I10, I11, I12, -1 * I11 + I13, 1 + I14) [-1 <= I14 /\ I14 <= -1 /\ 0 <= -1 - I13] 21.50/21.20 f5#(I15, I16, I17, I18, I19) -> f1#(I15, I16, I17, I18, I19) 21.50/21.20 f4#(I20, I21, I22, I23, I24) -> f5#(I20, I21, I22, 1 + I23, 1 + I24) 21.50/21.20 f3#(I25, I26, I27, I28, I29) -> f4#(I25, I26, I27, I28, I29) [I27 = I27] 21.50/21.20 f1#(I30, I31, I32, I33, I34) -> f3#(I30, I31, I32, I33, I34) [0 <= -1 - I33] 21.50/21.20 R = 21.50/21.20 f8(x1, x2, x3, x4, x5) -> f7(x1, x2, x3, x4, x5) 21.50/21.20 f7(I0, I1, I2, I3, I4) -> f1(I0, I1, I2, I3, I4) 21.50/21.20 f6(I5, I6, I7, I8, I9) -> f1(I5, I6, I7, I8, I9) 21.50/21.20 f1(I10, I11, I12, I13, I14) -> f6(I10, I11, I12, -1 * I11 + I13, 1 + I14) [-1 <= I14 /\ I14 <= -1 /\ 0 <= -1 - I13] 21.50/21.20 f5(I15, I16, I17, I18, I19) -> f1(I15, I16, I17, I18, I19) 21.50/21.20 f4(I20, I21, I22, I23, I24) -> f5(I20, I21, I22, 1 + I23, 1 + I24) 21.50/21.20 f3(I25, I26, I27, I28, I29) -> f4(I25, I26, I27, I28, I29) [I27 = I27] 21.50/21.20 f1(I30, I31, I32, I33, I34) -> f3(I30, I31, I32, I33, I34) [0 <= -1 - I33] 21.50/21.20 f1(I35, I36, I37, I38, I39) -> f2(rnd1, I36, I37, I38, I39) [rnd1 = rnd1 /\ -1 * I38 <= 0] 21.50/21.20 21.50/21.20 We use the extended value criterion with the projection function NU: 21.50/21.20 NU[f3#(x0,x1,x2,x3,x4)] = -x4 - 2 21.50/21.20 NU[f4#(x0,x1,x2,x3,x4)] = -x4 - 2 21.50/21.20 NU[f5#(x0,x1,x2,x3,x4)] = -x4 - 1 21.50/21.20 NU[f1#(x0,x1,x2,x3,x4)] = -x4 - 1 21.50/21.20 NU[f6#(x0,x1,x2,x3,x4)] = -x4 - 1 21.50/21.20 21.50/21.20 This gives the following inequalities: 21.50/21.20 ==> -I9 - 1 >= -I9 - 1 21.50/21.20 -1 <= I14 /\ I14 <= -1 /\ 0 <= -1 - I13 ==> -I14 - 1 > -(1 + I14) - 1 with -I14 - 1 >= 0 21.50/21.20 ==> -I19 - 1 >= -I19 - 1 21.50/21.20 ==> -I24 - 2 >= -(1 + I24) - 1 21.50/21.20 I27 = I27 ==> -I29 - 2 >= -I29 - 2 21.50/21.20 0 <= -1 - I33 ==> -I34 - 1 >= -I34 - 2 21.50/21.20 21.50/21.20 We remove all the strictly oriented dependency pairs. 21.50/21.20 21.50/21.20 DP problem for innermost termination. 21.50/21.20 P = 21.50/21.20 f6#(I5, I6, I7, I8, I9) -> f1#(I5, I6, I7, I8, I9) 21.50/21.20 f5#(I15, I16, I17, I18, I19) -> f1#(I15, I16, I17, I18, I19) 21.50/21.20 f4#(I20, I21, I22, I23, I24) -> f5#(I20, I21, I22, 1 + I23, 1 + I24) 21.50/21.20 f3#(I25, I26, I27, I28, I29) -> f4#(I25, I26, I27, I28, I29) [I27 = I27] 21.50/21.20 f1#(I30, I31, I32, I33, I34) -> f3#(I30, I31, I32, I33, I34) [0 <= -1 - I33] 21.50/21.20 R = 21.50/21.20 f8(x1, x2, x3, x4, x5) -> f7(x1, x2, x3, x4, x5) 21.50/21.20 f7(I0, I1, I2, I3, I4) -> f1(I0, I1, I2, I3, I4) 21.50/21.20 f6(I5, I6, I7, I8, I9) -> f1(I5, I6, I7, I8, I9) 21.50/21.20 f1(I10, I11, I12, I13, I14) -> f6(I10, I11, I12, -1 * I11 + I13, 1 + I14) [-1 <= I14 /\ I14 <= -1 /\ 0 <= -1 - I13] 21.50/21.20 f5(I15, I16, I17, I18, I19) -> f1(I15, I16, I17, I18, I19) 21.50/21.20 f4(I20, I21, I22, I23, I24) -> f5(I20, I21, I22, 1 + I23, 1 + I24) 21.50/21.20 f3(I25, I26, I27, I28, I29) -> f4(I25, I26, I27, I28, I29) [I27 = I27] 21.50/21.20 f1(I30, I31, I32, I33, I34) -> f3(I30, I31, I32, I33, I34) [0 <= -1 - I33] 21.50/21.20 f1(I35, I36, I37, I38, I39) -> f2(rnd1, I36, I37, I38, I39) [rnd1 = rnd1 /\ -1 * I38 <= 0] 21.50/21.20 21.50/21.20 The dependency graph for this problem is: 21.50/21.20 2 -> 7 21.50/21.20 4 -> 7 21.50/21.20 5 -> 4 21.50/21.20 6 -> 5 21.50/21.20 7 -> 6 21.50/21.20 Where: 21.50/21.20 2) f6#(I5, I6, I7, I8, I9) -> f1#(I5, I6, I7, I8, I9) 21.50/21.20 4) f5#(I15, I16, I17, I18, I19) -> f1#(I15, I16, I17, I18, I19) 21.50/21.20 5) f4#(I20, I21, I22, I23, I24) -> f5#(I20, I21, I22, 1 + I23, 1 + I24) 21.50/21.20 6) f3#(I25, I26, I27, I28, I29) -> f4#(I25, I26, I27, I28, I29) [I27 = I27] 21.50/21.20 7) f1#(I30, I31, I32, I33, I34) -> f3#(I30, I31, I32, I33, I34) [0 <= -1 - I33] 21.50/21.20 21.50/21.20 We have the following SCCs. 21.50/21.20 { 4, 5, 6, 7 } 21.50/21.20 21.50/21.20 DP problem for innermost termination. 21.50/21.20 P = 21.50/21.20 f5#(I15, I16, I17, I18, I19) -> f1#(I15, I16, I17, I18, I19) 21.50/21.20 f4#(I20, I21, I22, I23, I24) -> f5#(I20, I21, I22, 1 + I23, 1 + I24) 21.50/21.20 f3#(I25, I26, I27, I28, I29) -> f4#(I25, I26, I27, I28, I29) [I27 = I27] 21.50/21.20 f1#(I30, I31, I32, I33, I34) -> f3#(I30, I31, I32, I33, I34) [0 <= -1 - I33] 21.50/21.20 R = 21.50/21.20 f8(x1, x2, x3, x4, x5) -> f7(x1, x2, x3, x4, x5) 21.50/21.20 f7(I0, I1, I2, I3, I4) -> f1(I0, I1, I2, I3, I4) 21.50/21.20 f6(I5, I6, I7, I8, I9) -> f1(I5, I6, I7, I8, I9) 21.50/21.20 f1(I10, I11, I12, I13, I14) -> f6(I10, I11, I12, -1 * I11 + I13, 1 + I14) [-1 <= I14 /\ I14 <= -1 /\ 0 <= -1 - I13] 21.50/21.20 f5(I15, I16, I17, I18, I19) -> f1(I15, I16, I17, I18, I19) 21.50/21.20 f4(I20, I21, I22, I23, I24) -> f5(I20, I21, I22, 1 + I23, 1 + I24) 21.50/21.20 f3(I25, I26, I27, I28, I29) -> f4(I25, I26, I27, I28, I29) [I27 = I27] 21.50/21.20 f1(I30, I31, I32, I33, I34) -> f3(I30, I31, I32, I33, I34) [0 <= -1 - I33] 21.50/21.20 f1(I35, I36, I37, I38, I39) -> f2(rnd1, I36, I37, I38, I39) [rnd1 = rnd1 /\ -1 * I38 <= 0] 21.50/21.20 21.50/21.20 We use the extended value criterion with the projection function NU: 21.50/21.20 NU[f3#(x0,x1,x2,x3,x4)] = -x3 - 2 21.50/21.20 NU[f4#(x0,x1,x2,x3,x4)] = -x3 - 2 21.50/21.20 NU[f1#(x0,x1,x2,x3,x4)] = -x3 - 1 21.50/21.20 NU[f5#(x0,x1,x2,x3,x4)] = -x3 - 1 21.50/21.20 21.50/21.20 This gives the following inequalities: 21.50/21.20 ==> -I18 - 1 >= -I18 - 1 21.50/21.20 ==> -I23 - 2 >= -(1 + I23) - 1 21.50/21.20 I27 = I27 ==> -I28 - 2 >= -I28 - 2 21.50/21.20 0 <= -1 - I33 ==> -I33 - 1 > -I33 - 2 with -I33 - 1 >= 0 21.50/21.20 21.50/21.20 We remove all the strictly oriented dependency pairs. 21.50/21.20 21.50/21.20 DP problem for innermost termination. 21.50/21.20 P = 21.50/21.20 f5#(I15, I16, I17, I18, I19) -> f1#(I15, I16, I17, I18, I19) 21.50/21.20 f4#(I20, I21, I22, I23, I24) -> f5#(I20, I21, I22, 1 + I23, 1 + I24) 21.50/21.20 f3#(I25, I26, I27, I28, I29) -> f4#(I25, I26, I27, I28, I29) [I27 = I27] 21.50/21.20 R = 21.50/21.20 f8(x1, x2, x3, x4, x5) -> f7(x1, x2, x3, x4, x5) 21.50/21.20 f7(I0, I1, I2, I3, I4) -> f1(I0, I1, I2, I3, I4) 21.50/21.20 f6(I5, I6, I7, I8, I9) -> f1(I5, I6, I7, I8, I9) 21.50/21.20 f1(I10, I11, I12, I13, I14) -> f6(I10, I11, I12, -1 * I11 + I13, 1 + I14) [-1 <= I14 /\ I14 <= -1 /\ 0 <= -1 - I13] 21.50/21.20 f5(I15, I16, I17, I18, I19) -> f1(I15, I16, I17, I18, I19) 21.50/21.20 f4(I20, I21, I22, I23, I24) -> f5(I20, I21, I22, 1 + I23, 1 + I24) 21.50/21.20 f3(I25, I26, I27, I28, I29) -> f4(I25, I26, I27, I28, I29) [I27 = I27] 21.50/21.20 f1(I30, I31, I32, I33, I34) -> f3(I30, I31, I32, I33, I34) [0 <= -1 - I33] 21.50/21.20 f1(I35, I36, I37, I38, I39) -> f2(rnd1, I36, I37, I38, I39) [rnd1 = rnd1 /\ -1 * I38 <= 0] 21.50/21.20 21.50/21.20 The dependency graph for this problem is: 21.50/21.20 4 -> 21.50/21.20 5 -> 4 21.50/21.20 6 -> 5 21.50/21.20 Where: 21.50/21.20 4) f5#(I15, I16, I17, I18, I19) -> f1#(I15, I16, I17, I18, I19) 21.50/21.20 5) f4#(I20, I21, I22, I23, I24) -> f5#(I20, I21, I22, 1 + I23, 1 + I24) 21.50/21.20 6) f3#(I25, I26, I27, I28, I29) -> f4#(I25, I26, I27, I28, I29) [I27 = I27] 21.50/21.20 21.50/21.20 We have the following SCCs. 21.50/21.20 21.50/24.17 EOF