0.62/0.63 YES 0.62/0.63 0.62/0.63 DP problem for innermost termination. 0.62/0.63 P = 0.62/0.63 f9#(x1) -> f8#(x1) 0.62/0.63 f8#(I0) -> f3#(0) 0.62/0.63 f7#(I1) -> f5#(I1) [2 <= I1] 0.62/0.63 f7#(I2) -> f5#(I2) [1 + I2 <= 2] 0.62/0.63 f2#(I3) -> f7#(I3) 0.62/0.63 f3#(I5) -> f4#(I5) 0.62/0.63 f4#(I6) -> f2#(I6) 0.62/0.63 f4#(I7) -> f1#(I7) 0.62/0.63 f4#(I8) -> f1#(I8) 0.62/0.63 f1#(I9) -> f3#(1 + I9) [1 + I9 <= 3] 0.62/0.63 f1#(I10) -> f2#(I10) [3 <= I10] 0.62/0.63 R = 0.62/0.63 f9(x1) -> f8(x1) 0.62/0.63 f8(I0) -> f3(0) 0.62/0.63 f7(I1) -> f5(I1) [2 <= I1] 0.62/0.63 f7(I2) -> f5(I2) [1 + I2 <= 2] 0.62/0.63 f2(I3) -> f7(I3) 0.62/0.63 f5(I4) -> f6(I4) 0.62/0.63 f3(I5) -> f4(I5) 0.62/0.63 f4(I6) -> f2(I6) 0.62/0.63 f4(I7) -> f1(I7) 0.62/0.63 f4(I8) -> f1(I8) 0.62/0.63 f1(I9) -> f3(1 + I9) [1 + I9 <= 3] 0.62/0.63 f1(I10) -> f2(I10) [3 <= I10] 0.62/0.63 0.62/0.63 The dependency graph for this problem is: 0.62/0.63 0 -> 1 0.62/0.63 1 -> 5 0.62/0.63 2 -> 0.62/0.63 3 -> 0.62/0.63 4 -> 2, 3 0.62/0.63 5 -> 6, 7, 8 0.62/0.63 6 -> 4 0.62/0.63 7 -> 9, 10 0.62/0.63 8 -> 9, 10 0.62/0.63 9 -> 5 0.62/0.63 10 -> 4 0.62/0.63 Where: 0.62/0.63 0) f9#(x1) -> f8#(x1) 0.62/0.63 1) f8#(I0) -> f3#(0) 0.62/0.63 2) f7#(I1) -> f5#(I1) [2 <= I1] 0.62/0.63 3) f7#(I2) -> f5#(I2) [1 + I2 <= 2] 0.62/0.63 4) f2#(I3) -> f7#(I3) 0.62/0.63 5) f3#(I5) -> f4#(I5) 0.62/0.63 6) f4#(I6) -> f2#(I6) 0.62/0.63 7) f4#(I7) -> f1#(I7) 0.62/0.63 8) f4#(I8) -> f1#(I8) 0.62/0.63 9) f1#(I9) -> f3#(1 + I9) [1 + I9 <= 3] 0.62/0.63 10) f1#(I10) -> f2#(I10) [3 <= I10] 0.62/0.63 0.62/0.63 We have the following SCCs. 0.62/0.63 { 5, 7, 8, 9 } 0.62/0.63 0.62/0.63 DP problem for innermost termination. 0.62/0.63 P = 0.62/0.63 f3#(I5) -> f4#(I5) 0.62/0.63 f4#(I7) -> f1#(I7) 0.62/0.63 f4#(I8) -> f1#(I8) 0.62/0.63 f1#(I9) -> f3#(1 + I9) [1 + I9 <= 3] 0.62/0.63 R = 0.62/0.63 f9(x1) -> f8(x1) 0.62/0.63 f8(I0) -> f3(0) 0.62/0.63 f7(I1) -> f5(I1) [2 <= I1] 0.62/0.63 f7(I2) -> f5(I2) [1 + I2 <= 2] 0.62/0.63 f2(I3) -> f7(I3) 0.62/0.63 f5(I4) -> f6(I4) 0.62/0.63 f3(I5) -> f4(I5) 0.62/0.63 f4(I6) -> f2(I6) 0.62/0.63 f4(I7) -> f1(I7) 0.62/0.63 f4(I8) -> f1(I8) 0.62/0.63 f1(I9) -> f3(1 + I9) [1 + I9 <= 3] 0.62/0.63 f1(I10) -> f2(I10) [3 <= I10] 0.62/0.63 0.62/0.63 We use the extended value criterion with the projection function NU: 0.62/0.63 NU[f1#(x0)] = -x0 + 2 0.62/0.63 NU[f4#(x0)] = -x0 + 2 0.62/0.63 NU[f3#(x0)] = -x0 + 2 0.62/0.63 0.62/0.63 This gives the following inequalities: 0.62/0.63 ==> -I5 + 2 >= -I5 + 2 0.62/0.63 ==> -I7 + 2 >= -I7 + 2 0.62/0.63 ==> -I8 + 2 >= -I8 + 2 0.62/0.63 1 + I9 <= 3 ==> -I9 + 2 > -(1 + I9) + 2 with -I9 + 2 >= 0 0.62/0.63 0.62/0.63 We remove all the strictly oriented dependency pairs. 0.62/0.63 0.62/0.63 DP problem for innermost termination. 0.62/0.63 P = 0.62/0.63 f3#(I5) -> f4#(I5) 0.62/0.63 f4#(I7) -> f1#(I7) 0.62/0.63 f4#(I8) -> f1#(I8) 0.62/0.63 R = 0.62/0.63 f9(x1) -> f8(x1) 0.62/0.63 f8(I0) -> f3(0) 0.62/0.63 f7(I1) -> f5(I1) [2 <= I1] 0.62/0.63 f7(I2) -> f5(I2) [1 + I2 <= 2] 0.62/0.63 f2(I3) -> f7(I3) 0.62/0.63 f5(I4) -> f6(I4) 0.62/0.63 f3(I5) -> f4(I5) 0.62/0.63 f4(I6) -> f2(I6) 0.62/0.63 f4(I7) -> f1(I7) 0.62/0.63 f4(I8) -> f1(I8) 0.62/0.63 f1(I9) -> f3(1 + I9) [1 + I9 <= 3] 0.62/0.63 f1(I10) -> f2(I10) [3 <= I10] 0.62/0.63 0.62/0.63 The dependency graph for this problem is: 0.62/0.63 5 -> 7, 8 0.62/0.63 7 -> 0.62/0.63 8 -> 0.62/0.63 Where: 0.62/0.63 5) f3#(I5) -> f4#(I5) 0.62/0.63 7) f4#(I7) -> f1#(I7) 0.62/0.63 8) f4#(I8) -> f1#(I8) 0.62/0.63 0.62/0.63 We have the following SCCs. 0.62/0.63 0.62/3.61 EOF