3.04/0.78 YES 3.04/0.78 property Termination 3.04/0.78 has value True 3.04/0.78 for SRS ( [a, a] -> [b, b, c], [b, a] -> [c], [c, b] -> [a, a]) 3.04/0.78 reason 3.04/0.78 remap for 3 rules 3.04/0.78 property Termination 3.04/0.78 has value True 3.04/0.78 for SRS ( [0, 0] -> [1, 1, 2], [1, 0] -> [2], [2, 1] -> [0, 0]) 3.04/0.78 reason 3.04/0.78 reverse each lhs and rhs 3.04/0.78 property Termination 3.04/0.78 has value True 3.04/0.78 for SRS ( [0, 0] -> [2, 1, 1], [0, 1] -> [2], [1, 2] -> [0, 0]) 3.04/0.78 reason 3.04/0.78 DP transform 3.04/0.78 property Termination 3.04/0.78 has value True 3.04/0.78 for SRS ( [0, 0] ->= [2, 1, 1], [0, 1] ->= [2], [1, 2] ->= [0, 0], [0#, 0] |-> [1#, 1], [0#, 0] |-> [1#], [1#, 2] |-> [0#, 0], [1#, 2] |-> [0#]) 3.04/0.78 reason 3.04/0.78 remap for 7 rules 3.04/0.78 property Termination 3.04/0.78 has value True 3.04/0.78 for SRS ( [0, 0] ->= [1, 2, 2], [0, 2] ->= [1], [2, 1] ->= [0, 0], [3, 0] |-> [4, 2], [3, 0] |-> [4], [4, 1] |-> [3, 0], [4, 1] |-> [3]) 3.04/0.78 reason 3.04/0.78 EDG has 1 SCCs 3.04/0.78 property Termination 3.04/0.78 has value True 3.04/0.78 for SRS ( [3, 0] |-> [4, 2], [4, 1] |-> [3], [3, 0] |-> [4], [4, 1] |-> [3, 0], [0, 0] ->= [1, 2, 2], [0, 2] ->= [1], [2, 1] ->= [0, 0]) 3.04/0.78 reason 3.04/0.78 Matrix { monotone = Weak, domain = Arctic, bits = 4, dim = 2, solver = Minisatapi, verbose = False, tracing = True} 3.04/0.78 interpretation 3.04/0.78 0 / 0A 2A \ 3.04/0.78 \ 0A 0A / 3.04/0.78 1 / 0A 2A \ 3.04/0.78 \ 0A 2A / 3.04/0.78 2 / 0A 2A \ 3.04/0.78 \ -2A 0A / 3.04/0.78 3 / 27A 27A \ 3.04/0.78 \ 27A 27A / 3.04/0.78 4 / 25A 27A \ 3.04/0.78 \ 25A 27A / 3.04/0.78 [3, 0] |-> [4, 2] 3.04/0.78 lhs rhs ge gt 3.04/0.78 / 27A 29A \ / 25A 27A \ True True 3.04/0.78 \ 27A 29A / \ 25A 27A / 3.04/0.78 [4, 1] |-> [3] 3.04/0.78 lhs rhs ge gt 3.04/0.78 / 27A 29A \ / 27A 27A \ True False 3.04/0.78 \ 27A 29A / \ 27A 27A / 3.04/0.78 [3, 0] |-> [4] 3.04/0.78 lhs rhs ge gt 3.04/0.78 / 27A 29A \ / 25A 27A \ True True 3.04/0.78 \ 27A 29A / \ 25A 27A / 3.04/0.78 [4, 1] |-> [3, 0] 3.04/0.78 lhs rhs ge gt 3.04/0.78 / 27A 29A \ / 27A 29A \ True False 3.04/0.78 \ 27A 29A / \ 27A 29A / 3.04/0.78 [0, 0] ->= [1, 2, 2] 3.04/0.78 lhs rhs ge gt 3.04/0.78 / 2A 2A \ / 0A 2A \ True False 3.04/0.78 \ 0A 2A / \ 0A 2A / 3.04/0.78 [0, 2] ->= [1] 3.04/0.78 lhs rhs ge gt 3.04/0.78 / 0A 2A \ / 0A 2A \ True False 3.04/0.78 \ 0A 2A / \ 0A 2A / 3.04/0.78 [2, 1] ->= [0, 0] 3.04/0.78 lhs rhs ge gt 3.04/0.78 / 2A 4A \ / 2A 2A \ True False 3.04/0.78 \ 0A 2A / \ 0A 2A / 3.04/0.78 property Termination 3.04/0.78 has value True 3.04/0.78 for SRS ( [4, 1] |-> [3], [4, 1] |-> [3, 0], [0, 0] ->= [1, 2, 2], [0, 2] ->= [1], [2, 1] ->= [0, 0]) 3.04/0.78 reason 3.04/0.78 weights 3.04/0.78 Map [(4, 2/1)] 3.04/0.78 3.04/0.78 property Termination 3.04/0.78 has value True 3.04/0.78 for SRS ( [0, 0] ->= [1, 2, 2], [0, 2] ->= [1], [2, 1] ->= [0, 0]) 3.04/0.78 reason 3.04/0.78 EDG has 0 SCCs 3.04/0.78 3.04/0.78 ************************************************** 3.04/0.78 summary 3.04/0.78 ************************************************** 3.04/0.78 SRS with 3 rules on 3 letters Remap { tracing = False} 3.04/0.78 SRS with 3 rules on 3 letters reverse each lhs and rhs 3.04/0.78 SRS with 3 rules on 3 letters DP transform 3.04/0.78 SRS with 7 rules on 5 letters Remap { tracing = False} 3.04/0.78 SRS with 7 rules on 5 letters EDG 3.04/0.78 SRS with 7 rules on 5 letters Matrix { monotone = Weak, domain = Arctic, bits = 4, dim = 2, solver = Minisatapi, verbose = False, tracing = True} 3.04/0.78 SRS with 5 rules on 5 letters weights 3.04/0.78 SRS with 3 rules on 3 letters EDG 3.04/0.78 3.04/0.78 ************************************************** 3.04/0.78 (3, 3)\Deepee(7, 5)\Matrix{\Arctic}{2}(5, 5)\Weight(3, 3)\EDG[] 3.04/0.78 ************************************************** 3.04/0.79 let { done = Worker No_Strict_Rules;mo = Pre (Or_Else Count (IfSizeLeq 10000 GLPK Fail));wop = Or_Else (Worker (Weight { modus = mo})) Pass;weighted = \ m -> And_Then m wop;tiling = \ m w -> weighted (And_Then (Worker (Tiling { method = m,width = w})) (Worker Remap));when_small = \ m -> And_Then (Worker (SizeAtmost 100)) m;when_medium = \ m -> And_Then (Worker (SizeAtmost 10000)) m;solver = Minisatapi;qpi = \ dim bits -> weighted (when_small (Worker (QPI { tracing = True,dim = dim,bits = bits,solver = solver})));matrix = \ dom dim bits -> weighted (when_small (Worker (Matrix { monotone = Weak,domain = dom,dim = dim,bits = bits,tracing = False,solver = solver})));kbo = \ b -> weighted (when_small (Worker (KBO { bits = b,solver = solver})));mb = Worker (Matchbound { method = RFC,max_size = 100000});remove = First_Of ([ Worker (Weight { modus = mo})] <> ([ Seq [ qpi 2 4, qpi 3 4, qpi 4 4], Seq [ qpi 5 4, qpi 6 3, qpi 7 3]] <> ([ matrix Arctic 4 3, matrix Natural 4 3] <> [ kbo 1, And_Then (Worker Mirror) (kbo 1)])));remove_tile = Seq [ remove, tiling Overlap 3];dp = As_Transformer (Apply (And_Then (Worker (DP { tracing = False})) (Worker Remap)) (Apply wop (Branch (Worker (EDG { tracing = False})) remove_tile)));noh = [ Timeout 10 (Worker (Enumerate { closure = Forward})), Timeout 10 (Worker (Enumerate { closure = Backward}))];yeah = Tree_Search_Preemptive 0 done [ Worker (Weight { modus = mo}), mb, And_Then (Worker Mirror) mb, dp, And_Then (Worker Mirror) dp]} 3.04/0.79 in Apply (Worker Remap) (First_Of ([ yeah] <> noh)) 3.13/0.83 EOF