24.75/7.14 YES 24.75/7.16 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 24.75/7.16 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 24.75/7.16 24.75/7.16 24.75/7.16 Termination w.r.t. Q of the given QTRS could be proven: 24.75/7.16 24.75/7.16 (0) QTRS 24.75/7.16 (1) DependencyPairsProof [EQUIVALENT, 0 ms] 24.75/7.16 (2) QDP 24.75/7.16 (3) DependencyGraphProof [EQUIVALENT, 0 ms] 24.75/7.16 (4) QDP 24.75/7.16 (5) QDPOrderProof [EQUIVALENT, 208 ms] 24.75/7.16 (6) QDP 24.75/7.16 (7) QDPOrderProof [EQUIVALENT, 68 ms] 24.75/7.16 (8) QDP 24.75/7.16 (9) UsableRulesProof [EQUIVALENT, 2 ms] 24.75/7.16 (10) QDP 24.75/7.16 (11) QDPSizeChangeProof [EQUIVALENT, 0 ms] 24.75/7.16 (12) YES 24.75/7.16 24.75/7.16 24.75/7.16 ---------------------------------------- 24.75/7.16 24.75/7.16 (0) 24.75/7.16 Obligation: 24.75/7.16 Q restricted rewrite system: 24.75/7.16 The TRS R consists of the following rules: 24.75/7.16 24.75/7.16 a(x1) -> b(x1) 24.75/7.16 b(a(c(x1))) -> c(a(c(a(a(x1))))) 24.75/7.16 c(c(x1)) -> x1 24.75/7.16 24.75/7.16 Q is empty. 24.75/7.16 24.75/7.16 ---------------------------------------- 24.75/7.16 24.75/7.16 (1) DependencyPairsProof (EQUIVALENT) 24.75/7.16 Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. 24.75/7.16 ---------------------------------------- 24.75/7.16 24.75/7.16 (2) 24.75/7.16 Obligation: 24.75/7.16 Q DP problem: 24.75/7.16 The TRS P consists of the following rules: 24.75/7.16 24.75/7.16 A(x1) -> B(x1) 24.75/7.16 B(a(c(x1))) -> C(a(c(a(a(x1))))) 24.75/7.16 B(a(c(x1))) -> A(c(a(a(x1)))) 24.75/7.16 B(a(c(x1))) -> C(a(a(x1))) 24.75/7.16 B(a(c(x1))) -> A(a(x1)) 24.75/7.16 B(a(c(x1))) -> A(x1) 24.75/7.16 24.75/7.16 The TRS R consists of the following rules: 24.75/7.16 24.75/7.16 a(x1) -> b(x1) 24.75/7.16 b(a(c(x1))) -> c(a(c(a(a(x1))))) 24.75/7.16 c(c(x1)) -> x1 24.75/7.16 24.75/7.16 Q is empty. 24.75/7.16 We have to consider all minimal (P,Q,R)-chains. 24.75/7.16 ---------------------------------------- 24.75/7.16 24.75/7.16 (3) DependencyGraphProof (EQUIVALENT) 24.75/7.16 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. 24.75/7.16 ---------------------------------------- 24.75/7.16 24.75/7.16 (4) 24.75/7.16 Obligation: 24.75/7.16 Q DP problem: 24.75/7.16 The TRS P consists of the following rules: 24.75/7.16 24.75/7.16 B(a(c(x1))) -> A(c(a(a(x1)))) 24.75/7.16 A(x1) -> B(x1) 24.75/7.16 B(a(c(x1))) -> A(a(x1)) 24.75/7.16 B(a(c(x1))) -> A(x1) 24.75/7.16 24.75/7.16 The TRS R consists of the following rules: 24.75/7.16 24.75/7.16 a(x1) -> b(x1) 24.75/7.16 b(a(c(x1))) -> c(a(c(a(a(x1))))) 24.75/7.16 c(c(x1)) -> x1 24.75/7.16 24.75/7.16 Q is empty. 24.75/7.16 We have to consider all minimal (P,Q,R)-chains. 24.75/7.16 ---------------------------------------- 24.75/7.16 24.75/7.16 (5) QDPOrderProof (EQUIVALENT) 24.75/7.16 We use the reduction pair processor [LPAR04,JAR06]. 24.75/7.16 24.75/7.16 24.75/7.16 The following pairs can be oriented strictly and are deleted. 24.75/7.16 24.75/7.16 B(a(c(x1))) -> A(c(a(a(x1)))) 24.75/7.16 The remaining pairs can at least be oriented weakly. 24.75/7.16 Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: 24.75/7.16 24.75/7.16 <<< 24.75/7.16 POL(B(x_1)) = [[0A]] + [[-I, 0A, 0A]] * x_1 24.75/7.16 >>> 24.75/7.16 24.75/7.16 <<< 24.75/7.16 POL(a(x_1)) = [[0A], [0A], [0A]] + [[-I, -I, 0A], [0A, 0A, 0A], [0A, -I, -I]] * x_1 24.75/7.16 >>> 24.75/7.16 24.75/7.16 <<< 24.75/7.16 POL(c(x_1)) = [[1A], [0A], [0A]] + [[1A, 0A, 0A], [0A, -I, -I], [0A, -I, -I]] * x_1 24.75/7.16 >>> 24.75/7.16 24.75/7.16 <<< 24.75/7.16 POL(A(x_1)) = [[0A]] + [[-I, 0A, 0A]] * x_1 24.75/7.16 >>> 24.75/7.16 24.75/7.16 <<< 24.75/7.16 POL(b(x_1)) = [[0A], [-I], [-I]] + [[-I, -I, 0A], [0A, 0A, 0A], [0A, -I, -I]] * x_1 24.75/7.16 >>> 24.75/7.16 24.75/7.16 24.75/7.16 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 24.75/7.16 24.75/7.16 a(x1) -> b(x1) 24.75/7.16 c(c(x1)) -> x1 24.75/7.16 b(a(c(x1))) -> c(a(c(a(a(x1))))) 24.75/7.16 24.75/7.16 24.75/7.16 ---------------------------------------- 24.75/7.16 24.75/7.16 (6) 24.75/7.16 Obligation: 24.75/7.16 Q DP problem: 24.75/7.16 The TRS P consists of the following rules: 24.75/7.16 24.75/7.16 A(x1) -> B(x1) 24.75/7.16 B(a(c(x1))) -> A(a(x1)) 24.75/7.16 B(a(c(x1))) -> A(x1) 24.75/7.16 24.75/7.16 The TRS R consists of the following rules: 24.75/7.16 24.75/7.16 a(x1) -> b(x1) 24.75/7.16 b(a(c(x1))) -> c(a(c(a(a(x1))))) 24.75/7.16 c(c(x1)) -> x1 24.75/7.16 24.75/7.16 Q is empty. 24.75/7.16 We have to consider all minimal (P,Q,R)-chains. 24.75/7.16 ---------------------------------------- 24.75/7.16 24.75/7.16 (7) QDPOrderProof (EQUIVALENT) 24.75/7.16 We use the reduction pair processor [LPAR04,JAR06]. 24.75/7.16 24.75/7.16 24.75/7.16 The following pairs can be oriented strictly and are deleted. 24.75/7.16 24.75/7.16 B(a(c(x1))) -> A(a(x1)) 24.75/7.16 The remaining pairs can at least be oriented weakly. 24.75/7.16 Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: 24.75/7.16 24.75/7.16 <<< 24.75/7.16 POL(A(x_1)) = [[0A]] + [[0A, -I, -I]] * x_1 24.75/7.16 >>> 24.75/7.16 24.75/7.16 <<< 24.75/7.16 POL(B(x_1)) = [[0A]] + [[0A, -I, -I]] * x_1 24.75/7.16 >>> 24.75/7.16 24.75/7.16 <<< 24.75/7.16 POL(a(x_1)) = [[0A], [0A], [0A]] + [[-I, -I, 0A], [0A, 0A, 0A], [0A, -I, -I]] * x_1 24.75/7.16 >>> 24.75/7.16 24.75/7.16 <<< 24.75/7.16 POL(c(x_1)) = [[0A], [0A], [1A]] + [[-I, -I, 0A], [-I, 0A, -I], [0A, -I, 1A]] * x_1 24.75/7.16 >>> 24.75/7.16 24.75/7.16 <<< 24.75/7.16 POL(b(x_1)) = [[0A], [-I], [-I]] + [[-I, -I, 0A], [0A, 0A, 0A], [0A, -I, -I]] * x_1 24.75/7.16 >>> 24.75/7.16 24.75/7.16 24.75/7.16 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 24.75/7.16 24.75/7.16 a(x1) -> b(x1) 24.75/7.16 b(a(c(x1))) -> c(a(c(a(a(x1))))) 24.75/7.16 c(c(x1)) -> x1 24.75/7.16 24.75/7.16 24.75/7.16 ---------------------------------------- 24.75/7.16 24.75/7.16 (8) 24.75/7.16 Obligation: 24.75/7.16 Q DP problem: 24.75/7.16 The TRS P consists of the following rules: 24.75/7.16 24.75/7.16 A(x1) -> B(x1) 24.75/7.16 B(a(c(x1))) -> A(x1) 24.75/7.16 24.75/7.16 The TRS R consists of the following rules: 24.75/7.16 24.75/7.16 a(x1) -> b(x1) 24.75/7.16 b(a(c(x1))) -> c(a(c(a(a(x1))))) 24.75/7.16 c(c(x1)) -> x1 24.75/7.16 24.75/7.16 Q is empty. 24.75/7.16 We have to consider all minimal (P,Q,R)-chains. 24.75/7.16 ---------------------------------------- 24.75/7.16 24.75/7.16 (9) UsableRulesProof (EQUIVALENT) 24.75/7.16 We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. 24.75/7.16 ---------------------------------------- 24.75/7.16 24.75/7.16 (10) 24.75/7.16 Obligation: 24.75/7.16 Q DP problem: 24.75/7.16 The TRS P consists of the following rules: 24.75/7.16 24.75/7.16 A(x1) -> B(x1) 24.75/7.16 B(a(c(x1))) -> A(x1) 24.75/7.16 24.75/7.16 R is empty. 24.75/7.16 Q is empty. 24.75/7.16 We have to consider all minimal (P,Q,R)-chains. 24.75/7.16 ---------------------------------------- 24.75/7.16 24.75/7.16 (11) QDPSizeChangeProof (EQUIVALENT) 24.75/7.16 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 24.75/7.16 24.75/7.16 From the DPs we obtained the following set of size-change graphs: 24.75/7.16 *B(a(c(x1))) -> A(x1) 24.75/7.16 The graph contains the following edges 1 > 1 24.75/7.16 24.75/7.16 24.75/7.16 *A(x1) -> B(x1) 24.75/7.16 The graph contains the following edges 1 >= 1 24.75/7.16 24.75/7.16 24.75/7.16 ---------------------------------------- 24.75/7.16 24.75/7.16 (12) 24.75/7.16 YES 25.06/9.07 EOF