44.67/12.58 YES 44.89/12.61 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 44.89/12.61 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 44.89/12.61 44.89/12.61 44.89/12.61 Termination w.r.t. Q of the given QTRS could be proven: 44.89/12.61 44.89/12.61 (0) QTRS 44.89/12.61 (1) QTRS Reverse [EQUIVALENT, 0 ms] 44.89/12.61 (2) QTRS 44.89/12.61 (3) DependencyPairsProof [EQUIVALENT, 1 ms] 44.89/12.61 (4) QDP 44.89/12.61 (5) DependencyGraphProof [EQUIVALENT, 7 ms] 44.89/12.61 (6) QDP 44.89/12.61 (7) QDPOrderProof [EQUIVALENT, 78 ms] 44.89/12.61 (8) QDP 44.89/12.61 (9) QDPOrderProof [EQUIVALENT, 31 ms] 44.89/12.61 (10) QDP 44.89/12.61 (11) UsableRulesProof [EQUIVALENT, 0 ms] 44.89/12.61 (12) QDP 44.89/12.61 (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] 44.89/12.61 (14) YES 44.89/12.61 44.89/12.61 44.89/12.61 ---------------------------------------- 44.89/12.61 44.89/12.61 (0) 44.89/12.61 Obligation: 44.89/12.61 Q restricted rewrite system: 44.89/12.61 The TRS R consists of the following rules: 44.89/12.61 44.89/12.61 a(x1) -> b(b(c(b(x1)))) 44.89/12.61 c(b(b(x1))) -> a(c(x1)) 44.89/12.61 c(c(x1)) -> x1 44.89/12.61 44.89/12.61 Q is empty. 44.89/12.61 44.89/12.61 ---------------------------------------- 44.89/12.61 44.89/12.61 (1) QTRS Reverse (EQUIVALENT) 44.89/12.61 We applied the QTRS Reverse Processor [REVERSE]. 44.89/12.61 ---------------------------------------- 44.89/12.61 44.89/12.61 (2) 44.89/12.61 Obligation: 44.89/12.61 Q restricted rewrite system: 44.89/12.61 The TRS R consists of the following rules: 44.89/12.61 44.89/12.61 a(x1) -> b(c(b(b(x1)))) 44.89/12.61 b(b(c(x1))) -> c(a(x1)) 44.89/12.61 c(c(x1)) -> x1 44.89/12.61 44.89/12.61 Q is empty. 44.89/12.61 44.89/12.61 ---------------------------------------- 44.89/12.61 44.89/12.61 (3) DependencyPairsProof (EQUIVALENT) 44.89/12.61 Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. 44.89/12.61 ---------------------------------------- 44.89/12.61 44.89/12.61 (4) 44.89/12.61 Obligation: 44.89/12.61 Q DP problem: 44.89/12.61 The TRS P consists of the following rules: 44.89/12.61 44.89/12.61 A(x1) -> B(c(b(b(x1)))) 44.89/12.61 A(x1) -> C(b(b(x1))) 44.89/12.61 A(x1) -> B(b(x1)) 44.89/12.61 A(x1) -> B(x1) 44.89/12.61 B(b(c(x1))) -> C(a(x1)) 44.89/12.61 B(b(c(x1))) -> A(x1) 44.89/12.61 44.89/12.61 The TRS R consists of the following rules: 44.89/12.61 44.89/12.61 a(x1) -> b(c(b(b(x1)))) 44.89/12.61 b(b(c(x1))) -> c(a(x1)) 44.89/12.61 c(c(x1)) -> x1 44.89/12.61 44.89/12.61 Q is empty. 44.89/12.61 We have to consider all minimal (P,Q,R)-chains. 44.89/12.61 ---------------------------------------- 44.89/12.61 44.89/12.61 (5) DependencyGraphProof (EQUIVALENT) 44.89/12.61 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. 44.89/12.61 ---------------------------------------- 44.89/12.61 44.89/12.61 (6) 44.89/12.61 Obligation: 44.89/12.61 Q DP problem: 44.89/12.61 The TRS P consists of the following rules: 44.89/12.61 44.89/12.61 B(b(c(x1))) -> A(x1) 44.89/12.61 A(x1) -> B(c(b(b(x1)))) 44.89/12.61 A(x1) -> B(b(x1)) 44.89/12.61 A(x1) -> B(x1) 44.89/12.61 44.89/12.61 The TRS R consists of the following rules: 44.89/12.61 44.89/12.61 a(x1) -> b(c(b(b(x1)))) 44.89/12.61 b(b(c(x1))) -> c(a(x1)) 44.89/12.61 c(c(x1)) -> x1 44.89/12.61 44.89/12.61 Q is empty. 44.89/12.61 We have to consider all minimal (P,Q,R)-chains. 44.89/12.61 ---------------------------------------- 44.89/12.61 44.89/12.61 (7) QDPOrderProof (EQUIVALENT) 44.89/12.61 We use the reduction pair processor [LPAR04,JAR06]. 44.89/12.61 44.89/12.61 44.89/12.61 The following pairs can be oriented strictly and are deleted. 44.89/12.61 44.89/12.61 A(x1) -> B(b(x1)) 44.89/12.61 The remaining pairs can at least be oriented weakly. 44.89/12.61 Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: 44.89/12.61 44.89/12.61 <<< 44.89/12.61 POL(B(x_1)) = [[0A]] + [[-I, 0A, -I]] * x_1 44.89/12.61 >>> 44.89/12.61 44.89/12.61 <<< 44.89/12.61 POL(b(x_1)) = [[0A], [0A], [0A]] + [[-I, 0A, 0A], [0A, -I, -I], [-I, -I, 0A]] * x_1 44.89/12.61 >>> 44.89/12.61 44.89/12.61 <<< 44.89/12.61 POL(c(x_1)) = [[1A], [0A], [0A]] + [[1A, 0A, 1A], [0A, -I, 0A], [0A, -I, 0A]] * x_1 44.89/12.61 >>> 44.89/12.61 44.89/12.61 <<< 44.89/12.61 POL(A(x_1)) = [[1A]] + [[1A, 0A, 0A]] * x_1 44.89/12.61 >>> 44.89/12.61 44.89/12.61 <<< 44.89/12.61 POL(a(x_1)) = [[0A], [1A], [0A]] + [[0A, -I, 0A], [1A, 0A, 1A], [0A, -I, 0A]] * x_1 44.89/12.61 >>> 44.89/12.61 44.89/12.61 44.89/12.61 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 44.89/12.61 44.89/12.61 b(b(c(x1))) -> c(a(x1)) 44.89/12.61 c(c(x1)) -> x1 44.89/12.61 a(x1) -> b(c(b(b(x1)))) 44.89/12.61 44.89/12.61 44.89/12.61 ---------------------------------------- 44.89/12.61 44.89/12.61 (8) 44.89/12.61 Obligation: 44.89/12.61 Q DP problem: 44.89/12.61 The TRS P consists of the following rules: 44.89/12.61 44.89/12.61 B(b(c(x1))) -> A(x1) 44.89/12.61 A(x1) -> B(c(b(b(x1)))) 44.89/12.61 A(x1) -> B(x1) 44.89/12.61 44.89/12.61 The TRS R consists of the following rules: 44.89/12.61 44.89/12.61 a(x1) -> b(c(b(b(x1)))) 44.89/12.61 b(b(c(x1))) -> c(a(x1)) 44.89/12.61 c(c(x1)) -> x1 44.89/12.61 44.89/12.61 Q is empty. 44.89/12.61 We have to consider all minimal (P,Q,R)-chains. 44.89/12.61 ---------------------------------------- 44.89/12.61 44.89/12.61 (9) QDPOrderProof (EQUIVALENT) 44.89/12.61 We use the reduction pair processor [LPAR04,JAR06]. 44.89/12.61 44.89/12.61 44.89/12.61 The following pairs can be oriented strictly and are deleted. 44.89/12.61 44.89/12.61 A(x1) -> B(c(b(b(x1)))) 44.89/12.61 The remaining pairs can at least be oriented weakly. 44.89/12.61 Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: 44.89/12.61 44.89/12.61 <<< 44.89/12.61 POL(B(x_1)) = [[0A]] + [[0A, -I, -I]] * x_1 44.89/12.61 >>> 44.89/12.61 44.89/12.61 <<< 44.89/12.61 POL(b(x_1)) = [[0A], [0A], [0A]] + [[-I, 0A, 0A], [0A, -I, -I], [0A, -I, -I]] * x_1 44.89/12.61 >>> 44.89/12.61 44.89/12.61 <<< 44.89/12.61 POL(c(x_1)) = [[0A], [1A], [0A]] + [[-I, 0A, 0A], [0A, 1A, 1A], [0A, 0A, 0A]] * x_1 44.89/12.61 >>> 44.89/12.61 44.89/12.61 <<< 44.89/12.61 POL(A(x_1)) = [[1A]] + [[0A, 1A, 1A]] * x_1 44.89/12.61 >>> 44.89/12.61 44.89/12.61 <<< 44.89/12.61 POL(a(x_1)) = [[1A], [0A], [0A]] + [[0A, 1A, 1A], [-I, 0A, 0A], [-I, 0A, 0A]] * x_1 44.89/12.61 >>> 44.89/12.61 44.89/12.61 44.89/12.61 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 44.89/12.61 44.89/12.61 b(b(c(x1))) -> c(a(x1)) 44.89/12.61 c(c(x1)) -> x1 44.89/12.61 a(x1) -> b(c(b(b(x1)))) 44.89/12.61 44.89/12.61 44.89/12.61 ---------------------------------------- 44.89/12.61 44.89/12.61 (10) 44.89/12.61 Obligation: 44.89/12.61 Q DP problem: 44.89/12.61 The TRS P consists of the following rules: 44.89/12.61 44.89/12.61 B(b(c(x1))) -> A(x1) 44.89/12.61 A(x1) -> B(x1) 44.89/12.61 44.89/12.61 The TRS R consists of the following rules: 44.89/12.61 44.89/12.61 a(x1) -> b(c(b(b(x1)))) 44.89/12.61 b(b(c(x1))) -> c(a(x1)) 44.89/12.61 c(c(x1)) -> x1 44.89/12.61 44.89/12.61 Q is empty. 44.89/12.61 We have to consider all minimal (P,Q,R)-chains. 44.89/12.61 ---------------------------------------- 44.89/12.61 44.89/12.61 (11) UsableRulesProof (EQUIVALENT) 44.89/12.61 We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. 44.89/12.61 ---------------------------------------- 44.89/12.61 44.89/12.61 (12) 44.89/12.61 Obligation: 44.89/12.61 Q DP problem: 44.89/12.61 The TRS P consists of the following rules: 44.89/12.61 44.89/12.61 B(b(c(x1))) -> A(x1) 44.89/12.61 A(x1) -> B(x1) 44.89/12.61 44.89/12.61 R is empty. 44.89/12.61 Q is empty. 44.89/12.61 We have to consider all minimal (P,Q,R)-chains. 44.89/12.61 ---------------------------------------- 44.89/12.61 44.89/12.61 (13) QDPSizeChangeProof (EQUIVALENT) 44.89/12.61 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 44.89/12.61 44.89/12.61 From the DPs we obtained the following set of size-change graphs: 44.89/12.61 *A(x1) -> B(x1) 44.89/12.61 The graph contains the following edges 1 >= 1 44.89/12.61 44.89/12.61 44.89/12.61 *B(b(c(x1))) -> A(x1) 44.89/12.61 The graph contains the following edges 1 > 1 44.89/12.61 44.89/12.61 44.89/12.61 ---------------------------------------- 44.89/12.61 44.89/12.61 (14) 44.89/12.61 YES 45.23/12.71 EOF