22.99/6.77 YES 23.14/6.81 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 23.14/6.81 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 23.14/6.81 23.14/6.81 23.14/6.81 Termination w.r.t. Q of the given QTRS could be proven: 23.14/6.81 23.14/6.81 (0) QTRS 23.14/6.81 (1) QTRS Reverse [EQUIVALENT, 0 ms] 23.14/6.81 (2) QTRS 23.14/6.81 (3) DependencyPairsProof [EQUIVALENT, 0 ms] 23.14/6.81 (4) QDP 23.14/6.81 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 23.14/6.81 (6) QDP 23.14/6.81 (7) QDPOrderProof [EQUIVALENT, 131 ms] 23.14/6.81 (8) QDP 23.14/6.81 (9) UsableRulesProof [EQUIVALENT, 0 ms] 23.14/6.81 (10) QDP 23.14/6.81 (11) QDPSizeChangeProof [EQUIVALENT, 0 ms] 23.14/6.81 (12) YES 23.14/6.81 23.14/6.81 23.14/6.81 ---------------------------------------- 23.14/6.81 23.14/6.81 (0) 23.14/6.81 Obligation: 23.14/6.81 Q restricted rewrite system: 23.14/6.81 The TRS R consists of the following rules: 23.14/6.81 23.14/6.81 a(x1) -> x1 23.14/6.81 a(x1) -> b(x1) 23.14/6.81 b(x1) -> x1 23.14/6.81 b(a(c(x1))) -> c(c(b(a(a(x1))))) 23.14/6.81 23.14/6.81 Q is empty. 23.14/6.81 23.14/6.81 ---------------------------------------- 23.14/6.81 23.14/6.81 (1) QTRS Reverse (EQUIVALENT) 23.14/6.81 We applied the QTRS Reverse Processor [REVERSE]. 23.14/6.81 ---------------------------------------- 23.14/6.81 23.14/6.81 (2) 23.14/6.81 Obligation: 23.14/6.81 Q restricted rewrite system: 23.14/6.81 The TRS R consists of the following rules: 23.14/6.81 23.14/6.81 a(x1) -> x1 23.14/6.81 a(x1) -> b(x1) 23.14/6.81 b(x1) -> x1 23.14/6.81 c(a(b(x1))) -> a(a(b(c(c(x1))))) 23.14/6.81 23.14/6.81 Q is empty. 23.14/6.81 23.14/6.81 ---------------------------------------- 23.14/6.81 23.14/6.81 (3) DependencyPairsProof (EQUIVALENT) 23.14/6.81 Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. 23.14/6.81 ---------------------------------------- 23.14/6.81 23.14/6.81 (4) 23.14/6.81 Obligation: 23.14/6.81 Q DP problem: 23.14/6.81 The TRS P consists of the following rules: 23.14/6.81 23.14/6.81 A(x1) -> B(x1) 23.14/6.81 C(a(b(x1))) -> A(a(b(c(c(x1))))) 23.14/6.81 C(a(b(x1))) -> A(b(c(c(x1)))) 23.14/6.81 C(a(b(x1))) -> B(c(c(x1))) 23.14/6.81 C(a(b(x1))) -> C(c(x1)) 23.14/6.81 C(a(b(x1))) -> C(x1) 23.14/6.81 23.14/6.81 The TRS R consists of the following rules: 23.14/6.81 23.14/6.81 a(x1) -> x1 23.14/6.81 a(x1) -> b(x1) 23.14/6.81 b(x1) -> x1 23.14/6.81 c(a(b(x1))) -> a(a(b(c(c(x1))))) 23.14/6.81 23.14/6.81 Q is empty. 23.14/6.81 We have to consider all minimal (P,Q,R)-chains. 23.14/6.81 ---------------------------------------- 23.14/6.81 23.14/6.81 (5) DependencyGraphProof (EQUIVALENT) 23.14/6.81 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes. 23.14/6.81 ---------------------------------------- 23.14/6.81 23.14/6.81 (6) 23.14/6.81 Obligation: 23.14/6.81 Q DP problem: 23.14/6.81 The TRS P consists of the following rules: 23.14/6.81 23.14/6.81 C(a(b(x1))) -> C(x1) 23.14/6.81 C(a(b(x1))) -> C(c(x1)) 23.14/6.81 23.14/6.81 The TRS R consists of the following rules: 23.14/6.81 23.14/6.81 a(x1) -> x1 23.14/6.81 a(x1) -> b(x1) 23.14/6.81 b(x1) -> x1 23.14/6.81 c(a(b(x1))) -> a(a(b(c(c(x1))))) 23.14/6.81 23.14/6.81 Q is empty. 23.14/6.81 We have to consider all minimal (P,Q,R)-chains. 23.14/6.81 ---------------------------------------- 23.14/6.81 23.14/6.81 (7) QDPOrderProof (EQUIVALENT) 23.14/6.81 We use the reduction pair processor [LPAR04,JAR06]. 23.14/6.81 23.14/6.81 23.14/6.81 The following pairs can be oriented strictly and are deleted. 23.14/6.81 23.14/6.81 C(a(b(x1))) -> C(c(x1)) 23.14/6.81 The remaining pairs can at least be oriented weakly. 23.14/6.81 Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: 23.14/6.81 23.14/6.81 <<< 23.14/6.81 POL(C(x_1)) = [[0A]] + [[0A, 0A, -I]] * x_1 23.14/6.81 >>> 23.14/6.81 23.14/6.81 <<< 23.14/6.81 POL(a(x_1)) = [[0A], [0A], [1A]] + [[0A, -I, -I], [0A, 0A, 1A], [1A, 0A, 0A]] * x_1 23.14/6.81 >>> 23.14/6.81 23.14/6.81 <<< 23.14/6.81 POL(b(x_1)) = [[0A], [-I], [1A]] + [[0A, -I, -I], [0A, 0A, 0A], [-I, 0A, 0A]] * x_1 23.14/6.81 >>> 23.14/6.81 23.14/6.81 <<< 23.14/6.81 POL(c(x_1)) = [[0A], [-I], [0A]] + [[-I, -I, -I], [-I, 0A, 0A], [0A, 0A, 0A]] * x_1 23.14/6.81 >>> 23.14/6.81 23.14/6.81 23.14/6.81 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 23.14/6.81 23.14/6.81 c(a(b(x1))) -> a(a(b(c(c(x1))))) 23.14/6.81 b(x1) -> x1 23.14/6.81 a(x1) -> x1 23.14/6.81 a(x1) -> b(x1) 23.14/6.81 23.14/6.81 23.14/6.81 ---------------------------------------- 23.14/6.81 23.14/6.81 (8) 23.14/6.81 Obligation: 23.14/6.81 Q DP problem: 23.14/6.81 The TRS P consists of the following rules: 23.14/6.81 23.14/6.81 C(a(b(x1))) -> C(x1) 23.14/6.81 23.14/6.81 The TRS R consists of the following rules: 23.14/6.81 23.14/6.81 a(x1) -> x1 23.14/6.81 a(x1) -> b(x1) 23.14/6.81 b(x1) -> x1 23.14/6.81 c(a(b(x1))) -> a(a(b(c(c(x1))))) 23.14/6.81 23.14/6.81 Q is empty. 23.14/6.81 We have to consider all minimal (P,Q,R)-chains. 23.14/6.81 ---------------------------------------- 23.14/6.81 23.14/6.81 (9) UsableRulesProof (EQUIVALENT) 23.14/6.81 We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. 23.14/6.81 ---------------------------------------- 23.14/6.81 23.14/6.81 (10) 23.14/6.81 Obligation: 23.14/6.81 Q DP problem: 23.14/6.81 The TRS P consists of the following rules: 23.14/6.81 23.14/6.81 C(a(b(x1))) -> C(x1) 23.14/6.81 23.14/6.81 R is empty. 23.14/6.81 Q is empty. 23.14/6.81 We have to consider all minimal (P,Q,R)-chains. 23.14/6.81 ---------------------------------------- 23.14/6.81 23.14/6.81 (11) QDPSizeChangeProof (EQUIVALENT) 23.14/6.81 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 23.14/6.81 23.14/6.81 From the DPs we obtained the following set of size-change graphs: 23.14/6.81 *C(a(b(x1))) -> C(x1) 23.14/6.81 The graph contains the following edges 1 > 1 23.14/6.81 23.14/6.81 23.14/6.81 ---------------------------------------- 23.14/6.81 23.14/6.81 (12) 23.14/6.81 YES 23.39/6.86 EOF