40.30/11.09 YES 40.45/11.13 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 40.45/11.13 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 40.45/11.13 40.45/11.13 40.45/11.13 Termination w.r.t. Q of the given QTRS could be proven: 40.45/11.13 40.45/11.13 (0) QTRS 40.45/11.13 (1) DependencyPairsProof [EQUIVALENT, 10 ms] 40.45/11.13 (2) QDP 40.45/11.13 (3) DependencyGraphProof [EQUIVALENT, 0 ms] 40.45/11.13 (4) QDP 40.45/11.13 (5) QDPOrderProof [EQUIVALENT, 117 ms] 40.45/11.13 (6) QDP 40.45/11.13 (7) QDPOrderProof [EQUIVALENT, 63 ms] 40.45/11.13 (8) QDP 40.45/11.13 (9) UsableRulesProof [EQUIVALENT, 0 ms] 40.45/11.13 (10) QDP 40.45/11.13 (11) QDPSizeChangeProof [EQUIVALENT, 0 ms] 40.45/11.13 (12) YES 40.45/11.13 40.45/11.13 40.45/11.13 ---------------------------------------- 40.45/11.13 40.45/11.13 (0) 40.45/11.13 Obligation: 40.45/11.13 Q restricted rewrite system: 40.45/11.13 The TRS R consists of the following rules: 40.45/11.13 40.45/11.13 a(x1) -> b(x1) 40.45/11.13 a(b(x1)) -> x1 40.45/11.13 c(c(b(x1))) -> b(c(a(c(c(x1))))) 40.45/11.13 40.45/11.13 Q is empty. 40.45/11.13 40.45/11.13 ---------------------------------------- 40.45/11.13 40.45/11.13 (1) DependencyPairsProof (EQUIVALENT) 40.45/11.13 Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. 40.45/11.13 ---------------------------------------- 40.45/11.13 40.45/11.13 (2) 40.45/11.13 Obligation: 40.45/11.13 Q DP problem: 40.45/11.13 The TRS P consists of the following rules: 40.45/11.13 40.45/11.13 C(c(b(x1))) -> C(a(c(c(x1)))) 40.45/11.13 C(c(b(x1))) -> A(c(c(x1))) 40.45/11.13 C(c(b(x1))) -> C(c(x1)) 40.45/11.13 C(c(b(x1))) -> C(x1) 40.45/11.13 40.45/11.13 The TRS R consists of the following rules: 40.45/11.13 40.45/11.13 a(x1) -> b(x1) 40.45/11.13 a(b(x1)) -> x1 40.45/11.13 c(c(b(x1))) -> b(c(a(c(c(x1))))) 40.45/11.13 40.45/11.13 Q is empty. 40.45/11.13 We have to consider all minimal (P,Q,R)-chains. 40.45/11.13 ---------------------------------------- 40.45/11.13 40.45/11.13 (3) DependencyGraphProof (EQUIVALENT) 40.45/11.13 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. 40.45/11.13 ---------------------------------------- 40.45/11.13 40.45/11.13 (4) 40.45/11.13 Obligation: 40.45/11.13 Q DP problem: 40.45/11.13 The TRS P consists of the following rules: 40.45/11.13 40.45/11.13 C(c(b(x1))) -> C(c(x1)) 40.45/11.13 C(c(b(x1))) -> C(a(c(c(x1)))) 40.45/11.13 C(c(b(x1))) -> C(x1) 40.45/11.13 40.45/11.13 The TRS R consists of the following rules: 40.45/11.13 40.45/11.13 a(x1) -> b(x1) 40.45/11.13 a(b(x1)) -> x1 40.45/11.13 c(c(b(x1))) -> b(c(a(c(c(x1))))) 40.45/11.13 40.45/11.13 Q is empty. 40.45/11.13 We have to consider all minimal (P,Q,R)-chains. 40.45/11.13 ---------------------------------------- 40.45/11.13 40.45/11.13 (5) QDPOrderProof (EQUIVALENT) 40.45/11.13 We use the reduction pair processor [LPAR04,JAR06]. 40.45/11.13 40.45/11.13 40.45/11.13 The following pairs can be oriented strictly and are deleted. 40.45/11.13 40.45/11.13 C(c(b(x1))) -> C(a(c(c(x1)))) 40.45/11.13 The remaining pairs can at least be oriented weakly. 40.45/11.13 Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: 40.45/11.13 40.45/11.13 <<< 40.45/11.13 POL(C(x_1)) = [[0A]] + [[-I, 0A, 0A]] * x_1 40.45/11.13 >>> 40.45/11.13 40.45/11.13 <<< 40.45/11.13 POL(c(x_1)) = [[0A], [0A], [0A]] + [[-I, 0A, -I], [0A, -I, -I], [-I, 0A, 0A]] * x_1 40.45/11.13 >>> 40.45/11.13 40.45/11.13 <<< 40.45/11.13 POL(b(x_1)) = [[1A], [0A], [0A]] + [[1A, 0A, 0A], [0A, -I, -I], [0A, -I, -I]] * x_1 40.45/11.13 >>> 40.45/11.13 40.45/11.13 <<< 40.45/11.13 POL(a(x_1)) = [[1A], [0A], [0A]] + [[1A, 0A, 0A], [0A, -I, -I], [0A, -I, -I]] * x_1 40.45/11.13 >>> 40.45/11.13 40.45/11.13 40.45/11.13 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 40.45/11.13 40.45/11.13 c(c(b(x1))) -> b(c(a(c(c(x1))))) 40.45/11.13 a(x1) -> b(x1) 40.45/11.13 a(b(x1)) -> x1 40.45/11.13 40.45/11.13 40.45/11.13 ---------------------------------------- 40.45/11.13 40.45/11.13 (6) 40.45/11.13 Obligation: 40.45/11.13 Q DP problem: 40.45/11.13 The TRS P consists of the following rules: 40.45/11.13 40.45/11.13 C(c(b(x1))) -> C(c(x1)) 40.45/11.13 C(c(b(x1))) -> C(x1) 40.45/11.13 40.45/11.13 The TRS R consists of the following rules: 40.45/11.13 40.45/11.13 a(x1) -> b(x1) 40.45/11.13 a(b(x1)) -> x1 40.45/11.13 c(c(b(x1))) -> b(c(a(c(c(x1))))) 40.45/11.13 40.45/11.13 Q is empty. 40.45/11.13 We have to consider all minimal (P,Q,R)-chains. 40.45/11.13 ---------------------------------------- 40.45/11.13 40.45/11.13 (7) QDPOrderProof (EQUIVALENT) 40.45/11.13 We use the reduction pair processor [LPAR04,JAR06]. 40.45/11.13 40.45/11.13 40.45/11.13 The following pairs can be oriented strictly and are deleted. 40.45/11.13 40.45/11.13 C(c(b(x1))) -> C(c(x1)) 40.45/11.13 The remaining pairs can at least be oriented weakly. 40.45/11.13 Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: 40.45/11.13 40.45/11.13 <<< 40.45/11.13 POL(C(x_1)) = [[0A]] + [[0A, -I, 0A]] * x_1 40.45/11.13 >>> 40.45/11.13 40.45/11.13 <<< 40.45/11.13 POL(c(x_1)) = [[0A], [0A], [-I]] + [[-I, 0A, 0A], [0A, -I, 0A], [-I, -I, 0A]] * x_1 40.45/11.13 >>> 40.45/11.13 40.45/11.13 <<< 40.45/11.13 POL(b(x_1)) = [[0A], [1A], [-I]] + [[-I, -I, -I], [0A, 1A, 1A], [-I, -I, -I]] * x_1 40.45/11.13 >>> 40.45/11.13 40.45/11.13 <<< 40.45/11.13 POL(a(x_1)) = [[0A], [1A], [-I]] + [[-I, 0A, 0A], [0A, 1A, 1A], [-I, 0A, -I]] * x_1 40.45/11.13 >>> 40.45/11.13 40.45/11.13 40.45/11.13 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 40.45/11.13 40.45/11.13 c(c(b(x1))) -> b(c(a(c(c(x1))))) 40.45/11.13 a(x1) -> b(x1) 40.45/11.13 a(b(x1)) -> x1 40.45/11.13 40.45/11.13 40.45/11.13 ---------------------------------------- 40.45/11.13 40.45/11.13 (8) 40.45/11.13 Obligation: 40.45/11.13 Q DP problem: 40.45/11.13 The TRS P consists of the following rules: 40.45/11.13 40.45/11.13 C(c(b(x1))) -> C(x1) 40.45/11.13 40.45/11.13 The TRS R consists of the following rules: 40.45/11.13 40.45/11.13 a(x1) -> b(x1) 40.45/11.13 a(b(x1)) -> x1 40.45/11.13 c(c(b(x1))) -> b(c(a(c(c(x1))))) 40.45/11.13 40.45/11.13 Q is empty. 40.45/11.13 We have to consider all minimal (P,Q,R)-chains. 40.45/11.13 ---------------------------------------- 40.45/11.13 40.45/11.13 (9) UsableRulesProof (EQUIVALENT) 40.45/11.13 We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. 40.45/11.13 ---------------------------------------- 40.45/11.13 40.45/11.13 (10) 40.45/11.13 Obligation: 40.45/11.13 Q DP problem: 40.45/11.13 The TRS P consists of the following rules: 40.45/11.13 40.45/11.13 C(c(b(x1))) -> C(x1) 40.45/11.13 40.45/11.13 R is empty. 40.45/11.13 Q is empty. 40.45/11.13 We have to consider all minimal (P,Q,R)-chains. 40.45/11.13 ---------------------------------------- 40.45/11.13 40.45/11.13 (11) QDPSizeChangeProof (EQUIVALENT) 40.45/11.13 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 40.45/11.13 40.45/11.13 From the DPs we obtained the following set of size-change graphs: 40.45/11.13 *C(c(b(x1))) -> C(x1) 40.45/11.13 The graph contains the following edges 1 > 1 40.45/11.13 40.45/11.13 40.45/11.13 ---------------------------------------- 40.45/11.13 40.45/11.13 (12) 40.45/11.13 YES 40.53/11.21 EOF