34.12/9.53 YES 34.12/9.57 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 34.12/9.57 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 34.12/9.57 34.12/9.57 34.12/9.57 Termination w.r.t. Q of the given QTRS could be proven: 34.12/9.57 34.12/9.57 (0) QTRS 34.12/9.57 (1) QTRS Reverse [EQUIVALENT, 0 ms] 34.12/9.57 (2) QTRS 34.12/9.57 (3) DependencyPairsProof [EQUIVALENT, 10 ms] 34.12/9.57 (4) QDP 34.12/9.57 (5) DependencyGraphProof [EQUIVALENT, 8 ms] 34.12/9.57 (6) QDP 34.12/9.57 (7) QDPOrderProof [EQUIVALENT, 105 ms] 34.12/9.57 (8) QDP 34.12/9.57 (9) DependencyGraphProof [EQUIVALENT, 0 ms] 34.12/9.57 (10) QDP 34.12/9.57 (11) QDPOrderProof [EQUIVALENT, 24 ms] 34.12/9.57 (12) QDP 34.12/9.57 (13) UsableRulesProof [EQUIVALENT, 0 ms] 34.12/9.57 (14) QDP 34.12/9.57 (15) QDPSizeChangeProof [EQUIVALENT, 0 ms] 34.12/9.57 (16) YES 34.12/9.57 34.12/9.57 34.12/9.57 ---------------------------------------- 34.12/9.57 34.12/9.57 (0) 34.12/9.57 Obligation: 34.12/9.57 Q restricted rewrite system: 34.12/9.57 The TRS R consists of the following rules: 34.12/9.57 34.12/9.57 a(x1) -> b(c(x1)) 34.12/9.57 b(b(x1)) -> x1 34.12/9.57 b(c(c(x1))) -> c(c(a(b(x1)))) 34.12/9.57 34.12/9.57 Q is empty. 34.12/9.57 34.12/9.57 ---------------------------------------- 34.12/9.57 34.12/9.57 (1) QTRS Reverse (EQUIVALENT) 34.12/9.57 We applied the QTRS Reverse Processor [REVERSE]. 34.12/9.57 ---------------------------------------- 34.12/9.57 34.12/9.57 (2) 34.12/9.57 Obligation: 34.12/9.57 Q restricted rewrite system: 34.12/9.57 The TRS R consists of the following rules: 34.12/9.57 34.12/9.57 a(x1) -> c(b(x1)) 34.12/9.57 b(b(x1)) -> x1 34.12/9.57 c(c(b(x1))) -> b(a(c(c(x1)))) 34.12/9.57 34.12/9.57 Q is empty. 34.12/9.57 34.12/9.57 ---------------------------------------- 34.12/9.57 34.12/9.57 (3) DependencyPairsProof (EQUIVALENT) 34.12/9.57 Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. 34.12/9.57 ---------------------------------------- 34.12/9.57 34.12/9.57 (4) 34.12/9.57 Obligation: 34.12/9.57 Q DP problem: 34.12/9.57 The TRS P consists of the following rules: 34.12/9.57 34.12/9.57 A(x1) -> C(b(x1)) 34.12/9.57 A(x1) -> B(x1) 34.12/9.57 C(c(b(x1))) -> B(a(c(c(x1)))) 34.12/9.57 C(c(b(x1))) -> A(c(c(x1))) 34.12/9.57 C(c(b(x1))) -> C(c(x1)) 34.12/9.57 C(c(b(x1))) -> C(x1) 34.12/9.57 34.12/9.57 The TRS R consists of the following rules: 34.12/9.57 34.12/9.57 a(x1) -> c(b(x1)) 34.12/9.57 b(b(x1)) -> x1 34.12/9.57 c(c(b(x1))) -> b(a(c(c(x1)))) 34.12/9.57 34.12/9.57 Q is empty. 34.12/9.57 We have to consider all minimal (P,Q,R)-chains. 34.12/9.57 ---------------------------------------- 34.12/9.57 34.12/9.57 (5) DependencyGraphProof (EQUIVALENT) 34.12/9.57 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. 34.12/9.57 ---------------------------------------- 34.12/9.57 34.12/9.57 (6) 34.12/9.57 Obligation: 34.12/9.57 Q DP problem: 34.12/9.57 The TRS P consists of the following rules: 34.12/9.57 34.12/9.57 C(c(b(x1))) -> A(c(c(x1))) 34.12/9.57 A(x1) -> C(b(x1)) 34.12/9.57 C(c(b(x1))) -> C(c(x1)) 34.12/9.57 C(c(b(x1))) -> C(x1) 34.12/9.57 34.12/9.57 The TRS R consists of the following rules: 34.12/9.57 34.12/9.57 a(x1) -> c(b(x1)) 34.12/9.57 b(b(x1)) -> x1 34.12/9.57 c(c(b(x1))) -> b(a(c(c(x1)))) 34.12/9.57 34.12/9.57 Q is empty. 34.12/9.57 We have to consider all minimal (P,Q,R)-chains. 34.12/9.57 ---------------------------------------- 34.12/9.57 34.12/9.57 (7) QDPOrderProof (EQUIVALENT) 34.12/9.57 We use the reduction pair processor [LPAR04,JAR06]. 34.12/9.57 34.12/9.57 34.12/9.57 The following pairs can be oriented strictly and are deleted. 34.12/9.57 34.12/9.57 C(c(b(x1))) -> A(c(c(x1))) 34.12/9.57 The remaining pairs can at least be oriented weakly. 34.12/9.57 Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: 34.12/9.57 34.12/9.57 <<< 34.12/9.57 POL(C(x_1)) = [[0A]] + [[0A, -I, 0A]] * x_1 34.12/9.57 >>> 34.12/9.57 34.12/9.57 <<< 34.12/9.57 POL(c(x_1)) = [[0A], [0A], [0A]] + [[-I, 0A, -I], [0A, -I, -I], [0A, 0A, 0A]] * x_1 34.12/9.57 >>> 34.12/9.57 34.12/9.57 <<< 34.12/9.57 POL(b(x_1)) = [[0A], [1A], [0A]] + [[-I, 0A, -I], [0A, 1A, 0A], [-I, 0A, -I]] * x_1 34.12/9.57 >>> 34.12/9.57 34.12/9.57 <<< 34.12/9.57 POL(A(x_1)) = [[0A]] + [[-I, 0A, -I]] * x_1 34.12/9.57 >>> 34.12/9.57 34.12/9.57 <<< 34.12/9.57 POL(a(x_1)) = [[1A], [0A], [1A]] + [[0A, 1A, 0A], [-I, 0A, -I], [0A, 1A, 0A]] * x_1 34.12/9.57 >>> 34.12/9.57 34.12/9.57 34.12/9.57 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 34.12/9.57 34.12/9.57 c(c(b(x1))) -> b(a(c(c(x1)))) 34.12/9.57 b(b(x1)) -> x1 34.12/9.57 a(x1) -> c(b(x1)) 34.12/9.57 34.12/9.57 34.12/9.57 ---------------------------------------- 34.12/9.57 34.12/9.57 (8) 34.12/9.57 Obligation: 34.12/9.57 Q DP problem: 34.12/9.57 The TRS P consists of the following rules: 34.12/9.57 34.12/9.57 A(x1) -> C(b(x1)) 34.12/9.57 C(c(b(x1))) -> C(c(x1)) 34.12/9.57 C(c(b(x1))) -> C(x1) 34.12/9.57 34.12/9.57 The TRS R consists of the following rules: 34.12/9.57 34.12/9.57 a(x1) -> c(b(x1)) 34.12/9.57 b(b(x1)) -> x1 34.12/9.57 c(c(b(x1))) -> b(a(c(c(x1)))) 34.12/9.57 34.12/9.57 Q is empty. 34.12/9.57 We have to consider all minimal (P,Q,R)-chains. 34.12/9.57 ---------------------------------------- 34.12/9.57 34.12/9.57 (9) DependencyGraphProof (EQUIVALENT) 34.12/9.57 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. 34.12/9.57 ---------------------------------------- 34.12/9.57 34.12/9.57 (10) 34.12/9.57 Obligation: 34.12/9.57 Q DP problem: 34.12/9.57 The TRS P consists of the following rules: 34.12/9.57 34.12/9.57 C(c(b(x1))) -> C(x1) 34.12/9.57 C(c(b(x1))) -> C(c(x1)) 34.12/9.57 34.12/9.57 The TRS R consists of the following rules: 34.12/9.57 34.12/9.57 a(x1) -> c(b(x1)) 34.12/9.57 b(b(x1)) -> x1 34.12/9.57 c(c(b(x1))) -> b(a(c(c(x1)))) 34.12/9.57 34.12/9.57 Q is empty. 34.12/9.57 We have to consider all minimal (P,Q,R)-chains. 34.12/9.57 ---------------------------------------- 34.12/9.57 34.12/9.57 (11) QDPOrderProof (EQUIVALENT) 34.12/9.57 We use the reduction pair processor [LPAR04,JAR06]. 34.12/9.57 34.12/9.57 34.12/9.57 The following pairs can be oriented strictly and are deleted. 34.12/9.57 34.12/9.57 C(c(b(x1))) -> C(c(x1)) 34.12/9.57 The remaining pairs can at least be oriented weakly. 34.12/9.57 Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: 34.12/9.57 34.12/9.57 <<< 34.12/9.57 POL(C(x_1)) = [[0A]] + [[0A, 0A, -I]] * x_1 34.12/9.57 >>> 34.12/9.57 34.12/9.57 <<< 34.12/9.57 POL(c(x_1)) = [[-I], [-I], [-I]] + [[0A, -I, -I], [0A, -I, 0A], [0A, 0A, -I]] * x_1 34.12/9.57 >>> 34.12/9.57 34.12/9.57 <<< 34.12/9.57 POL(b(x_1)) = [[-I], [-I], [1A]] + [[0A, -I, 0A], [0A, -I, 0A], [1A, 0A, 1A]] * x_1 34.12/9.57 >>> 34.12/9.57 34.12/9.57 <<< 34.12/9.57 POL(a(x_1)) = [[-I], [1A], [-I]] + [[0A, -I, 0A], [1A, 0A, 1A], [0A, -I, 0A]] * x_1 34.12/9.57 >>> 34.12/9.57 34.12/9.57 34.12/9.57 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 34.12/9.57 34.12/9.57 c(c(b(x1))) -> b(a(c(c(x1)))) 34.12/9.57 a(x1) -> c(b(x1)) 34.12/9.57 b(b(x1)) -> x1 34.12/9.57 34.12/9.57 34.12/9.57 ---------------------------------------- 34.12/9.57 34.12/9.57 (12) 34.12/9.57 Obligation: 34.12/9.57 Q DP problem: 34.12/9.57 The TRS P consists of the following rules: 34.12/9.57 34.12/9.57 C(c(b(x1))) -> C(x1) 34.12/9.57 34.12/9.57 The TRS R consists of the following rules: 34.12/9.57 34.12/9.57 a(x1) -> c(b(x1)) 34.12/9.57 b(b(x1)) -> x1 34.12/9.57 c(c(b(x1))) -> b(a(c(c(x1)))) 34.12/9.57 34.12/9.57 Q is empty. 34.12/9.57 We have to consider all minimal (P,Q,R)-chains. 34.12/9.57 ---------------------------------------- 34.12/9.57 34.12/9.57 (13) UsableRulesProof (EQUIVALENT) 34.12/9.57 We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. 34.12/9.57 ---------------------------------------- 34.12/9.57 34.12/9.57 (14) 34.12/9.57 Obligation: 34.12/9.57 Q DP problem: 34.12/9.57 The TRS P consists of the following rules: 34.12/9.57 34.12/9.57 C(c(b(x1))) -> C(x1) 34.12/9.57 34.12/9.57 R is empty. 34.12/9.57 Q is empty. 34.12/9.57 We have to consider all minimal (P,Q,R)-chains. 34.12/9.57 ---------------------------------------- 34.12/9.57 34.12/9.57 (15) QDPSizeChangeProof (EQUIVALENT) 34.12/9.57 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 34.12/9.57 34.12/9.57 From the DPs we obtained the following set of size-change graphs: 34.12/9.57 *C(c(b(x1))) -> C(x1) 34.12/9.57 The graph contains the following edges 1 > 1 34.12/9.57 34.12/9.57 34.12/9.57 ---------------------------------------- 34.12/9.57 34.12/9.57 (16) 34.12/9.57 YES 34.65/9.69 EOF