42.39/11.78 YES 42.39/11.82 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 42.39/11.82 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 42.39/11.82 42.39/11.82 42.39/11.82 Termination w.r.t. Q of the given QTRS could be proven: 42.39/11.82 42.39/11.82 (0) QTRS 42.39/11.82 (1) DependencyPairsProof [EQUIVALENT, 0 ms] 42.39/11.82 (2) QDP 42.39/11.82 (3) DependencyGraphProof [EQUIVALENT, 0 ms] 42.39/11.82 (4) QDP 42.39/11.82 (5) QDPOrderProof [EQUIVALENT, 341 ms] 42.39/11.82 (6) QDP 42.39/11.82 (7) UsableRulesProof [EQUIVALENT, 0 ms] 42.39/11.82 (8) QDP 42.39/11.82 (9) QDPSizeChangeProof [EQUIVALENT, 0 ms] 42.39/11.82 (10) YES 42.39/11.82 42.39/11.82 42.39/11.82 ---------------------------------------- 42.39/11.82 42.39/11.82 (0) 42.39/11.82 Obligation: 42.39/11.82 Q restricted rewrite system: 42.39/11.82 The TRS R consists of the following rules: 42.39/11.82 42.39/11.82 a(a(x1)) -> x1 42.39/11.82 b(b(x1)) -> c(c(c(x1))) 42.39/11.82 b(c(x1)) -> a(b(b(x1))) 42.39/11.82 42.39/11.82 Q is empty. 42.39/11.82 42.39/11.82 ---------------------------------------- 42.39/11.82 42.39/11.82 (1) DependencyPairsProof (EQUIVALENT) 42.39/11.82 Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. 42.39/11.82 ---------------------------------------- 42.39/11.82 42.39/11.82 (2) 42.39/11.82 Obligation: 42.39/11.82 Q DP problem: 42.39/11.82 The TRS P consists of the following rules: 42.39/11.82 42.39/11.82 B(c(x1)) -> A(b(b(x1))) 42.39/11.82 B(c(x1)) -> B(b(x1)) 42.39/11.82 B(c(x1)) -> B(x1) 42.39/11.82 42.39/11.82 The TRS R consists of the following rules: 42.39/11.82 42.39/11.82 a(a(x1)) -> x1 42.39/11.82 b(b(x1)) -> c(c(c(x1))) 42.39/11.82 b(c(x1)) -> a(b(b(x1))) 42.39/11.82 42.39/11.82 Q is empty. 42.39/11.82 We have to consider all minimal (P,Q,R)-chains. 42.39/11.82 ---------------------------------------- 42.39/11.82 42.39/11.82 (3) DependencyGraphProof (EQUIVALENT) 42.39/11.82 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. 42.39/11.82 ---------------------------------------- 42.39/11.82 42.39/11.82 (4) 42.39/11.82 Obligation: 42.39/11.82 Q DP problem: 42.39/11.82 The TRS P consists of the following rules: 42.39/11.82 42.39/11.82 B(c(x1)) -> B(x1) 42.39/11.82 B(c(x1)) -> B(b(x1)) 42.39/11.82 42.39/11.82 The TRS R consists of the following rules: 42.39/11.82 42.39/11.82 a(a(x1)) -> x1 42.39/11.82 b(b(x1)) -> c(c(c(x1))) 42.39/11.82 b(c(x1)) -> a(b(b(x1))) 42.39/11.82 42.39/11.82 Q is empty. 42.39/11.82 We have to consider all minimal (P,Q,R)-chains. 42.39/11.82 ---------------------------------------- 42.39/11.82 42.39/11.82 (5) QDPOrderProof (EQUIVALENT) 42.39/11.82 We use the reduction pair processor [LPAR04,JAR06]. 42.39/11.82 42.39/11.82 42.39/11.82 The following pairs can be oriented strictly and are deleted. 42.39/11.82 42.39/11.82 B(c(x1)) -> B(b(x1)) 42.39/11.82 The remaining pairs can at least be oriented weakly. 42.39/11.82 Used ordering: Matrix interpretation [MATRO] with arctic integers [ARCTIC,STERNAGEL_THIEMANN_RTA14]: 42.39/11.82 42.39/11.82 <<< 42.39/11.82 POL(B(x_1)) = [[0A]] + [[-1A, -1A, -1A]] * x_1 42.39/11.82 >>> 42.39/11.82 42.39/11.82 <<< 42.39/11.82 POL(c(x_1)) = [[2A], [-I], [0A]] + [[0A, -1A, 0A], [-I, -1A, -I], [-I, 2A, -I]] * x_1 42.39/11.82 >>> 42.39/11.82 42.39/11.82 <<< 42.39/11.82 POL(b(x_1)) = [[0A], [1A], [-I]] + [[-1A, 1A, -1A], [-1A, 1A, -1A], [-1A, -1A, -1A]] * x_1 42.39/11.82 >>> 42.39/11.82 42.39/11.82 <<< 42.39/11.82 POL(a(x_1)) = [[0A], [-I], [-I]] + [[-1A, -1A, 1A], [-1A, -1A, 1A], [-1A, -1A, -1A]] * x_1 42.39/11.82 >>> 42.39/11.82 42.39/11.82 42.39/11.82 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 42.39/11.82 42.39/11.82 b(b(x1)) -> c(c(c(x1))) 42.39/11.82 b(c(x1)) -> a(b(b(x1))) 42.39/11.82 a(a(x1)) -> x1 42.39/11.82 42.39/11.82 42.39/11.82 ---------------------------------------- 42.39/11.82 42.39/11.82 (6) 42.39/11.82 Obligation: 42.39/11.82 Q DP problem: 42.39/11.82 The TRS P consists of the following rules: 42.39/11.82 42.39/11.82 B(c(x1)) -> B(x1) 42.39/11.82 42.39/11.82 The TRS R consists of the following rules: 42.39/11.82 42.39/11.82 a(a(x1)) -> x1 42.39/11.82 b(b(x1)) -> c(c(c(x1))) 42.39/11.82 b(c(x1)) -> a(b(b(x1))) 42.39/11.82 42.39/11.82 Q is empty. 42.39/11.82 We have to consider all minimal (P,Q,R)-chains. 42.39/11.82 ---------------------------------------- 42.39/11.82 42.39/11.82 (7) UsableRulesProof (EQUIVALENT) 42.39/11.82 We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. 42.39/11.82 ---------------------------------------- 42.39/11.82 42.39/11.82 (8) 42.39/11.82 Obligation: 42.39/11.82 Q DP problem: 42.39/11.82 The TRS P consists of the following rules: 42.39/11.82 42.39/11.82 B(c(x1)) -> B(x1) 42.39/11.82 42.39/11.82 R is empty. 42.39/11.82 Q is empty. 42.39/11.82 We have to consider all minimal (P,Q,R)-chains. 42.39/11.82 ---------------------------------------- 42.39/11.82 42.39/11.82 (9) QDPSizeChangeProof (EQUIVALENT) 42.39/11.82 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 42.39/11.82 42.39/11.82 From the DPs we obtained the following set of size-change graphs: 42.39/11.82 *B(c(x1)) -> B(x1) 42.39/11.82 The graph contains the following edges 1 > 1 42.39/11.82 42.39/11.82 42.39/11.82 ---------------------------------------- 42.39/11.82 42.39/11.82 (10) 42.39/11.82 YES 42.84/11.97 EOF