42.31/11.71 YES 43.13/11.93 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 43.13/11.93 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 43.13/11.93 43.13/11.93 43.13/11.93 Termination w.r.t. Q of the given QTRS could be proven: 43.13/11.93 43.13/11.93 (0) QTRS 43.13/11.93 (1) QTRS Reverse [EQUIVALENT, 0 ms] 43.13/11.93 (2) QTRS 43.13/11.93 (3) DependencyPairsProof [EQUIVALENT, 2 ms] 43.13/11.93 (4) QDP 43.13/11.93 (5) QDPOrderProof [EQUIVALENT, 89 ms] 43.13/11.93 (6) QDP 43.13/11.93 (7) DependencyGraphProof [EQUIVALENT, 0 ms] 43.13/11.93 (8) QDP 43.13/11.93 (9) QDPOrderProof [EQUIVALENT, 19 ms] 43.13/11.93 (10) QDP 43.13/11.93 (11) QDPOrderProof [EQUIVALENT, 1096 ms] 43.13/11.93 (12) QDP 43.13/11.93 (13) DependencyGraphProof [EQUIVALENT, 0 ms] 43.13/11.93 (14) TRUE 43.13/11.93 43.13/11.93 43.13/11.93 ---------------------------------------- 43.13/11.93 43.13/11.93 (0) 43.13/11.93 Obligation: 43.13/11.93 Q restricted rewrite system: 43.13/11.93 The TRS R consists of the following rules: 43.13/11.93 43.13/11.93 d(a(x1)) -> b(d(x1)) 43.13/11.93 b(x1) -> a(a(a(x1))) 43.13/11.93 c(d(c(x1))) -> a(d(x1)) 43.13/11.93 b(d(d(x1))) -> c(c(d(d(c(x1))))) 43.13/11.93 43.13/11.93 Q is empty. 43.13/11.93 43.13/11.93 ---------------------------------------- 43.13/11.93 43.13/11.93 (1) QTRS Reverse (EQUIVALENT) 43.13/11.93 We applied the QTRS Reverse Processor [REVERSE]. 43.13/11.93 ---------------------------------------- 43.13/11.93 43.13/11.93 (2) 43.13/11.93 Obligation: 43.13/11.93 Q restricted rewrite system: 43.13/11.93 The TRS R consists of the following rules: 43.13/11.93 43.13/11.93 a(d(x1)) -> d(b(x1)) 43.13/11.93 b(x1) -> a(a(a(x1))) 43.13/11.93 c(d(c(x1))) -> d(a(x1)) 43.13/11.93 d(d(b(x1))) -> c(d(d(c(c(x1))))) 43.13/11.93 43.13/11.93 Q is empty. 43.13/11.93 43.13/11.93 ---------------------------------------- 43.13/11.93 43.13/11.93 (3) DependencyPairsProof (EQUIVALENT) 43.13/11.93 Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. 43.13/11.93 ---------------------------------------- 43.13/11.93 43.13/11.93 (4) 43.13/11.93 Obligation: 43.13/11.93 Q DP problem: 43.13/11.93 The TRS P consists of the following rules: 43.13/11.93 43.13/11.93 A(d(x1)) -> D(b(x1)) 43.13/11.93 A(d(x1)) -> B(x1) 43.13/11.93 B(x1) -> A(a(a(x1))) 43.13/11.93 B(x1) -> A(a(x1)) 43.13/11.93 B(x1) -> A(x1) 43.13/11.93 C(d(c(x1))) -> D(a(x1)) 43.13/11.93 C(d(c(x1))) -> A(x1) 43.13/11.93 D(d(b(x1))) -> C(d(d(c(c(x1))))) 43.13/11.93 D(d(b(x1))) -> D(d(c(c(x1)))) 43.13/11.93 D(d(b(x1))) -> D(c(c(x1))) 43.13/11.93 D(d(b(x1))) -> C(c(x1)) 43.13/11.93 D(d(b(x1))) -> C(x1) 43.13/11.93 43.13/11.93 The TRS R consists of the following rules: 43.13/11.93 43.13/11.93 a(d(x1)) -> d(b(x1)) 43.13/11.93 b(x1) -> a(a(a(x1))) 43.13/11.93 c(d(c(x1))) -> d(a(x1)) 43.13/11.93 d(d(b(x1))) -> c(d(d(c(c(x1))))) 43.13/11.93 43.13/11.93 Q is empty. 43.13/11.93 We have to consider all minimal (P,Q,R)-chains. 43.13/11.93 ---------------------------------------- 43.13/11.93 43.13/11.93 (5) QDPOrderProof (EQUIVALENT) 43.13/11.93 We use the reduction pair processor [LPAR04,JAR06]. 43.13/11.93 43.13/11.93 43.13/11.93 The following pairs can be oriented strictly and are deleted. 43.13/11.93 43.13/11.93 A(d(x1)) -> D(b(x1)) 43.13/11.93 B(x1) -> A(a(a(x1))) 43.13/11.93 B(x1) -> A(a(x1)) 43.13/11.93 B(x1) -> A(x1) 43.13/11.93 C(d(c(x1))) -> A(x1) 43.13/11.93 D(d(b(x1))) -> D(c(c(x1))) 43.13/11.93 D(d(b(x1))) -> C(c(x1)) 43.13/11.93 D(d(b(x1))) -> C(x1) 43.13/11.93 The remaining pairs can at least be oriented weakly. 43.13/11.93 Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: 43.13/11.93 43.13/11.93 POL( D_1(x_1) ) = 2x_1 + 1 43.13/11.93 POL( A_1(x_1) ) = 2x_1 43.13/11.93 POL( d_1(x_1) ) = x_1 + 1 43.13/11.93 POL( C_1(x_1) ) = max{0, 2x_1 - 1} 43.13/11.93 POL( b_1(x_1) ) = x_1 43.13/11.93 POL( a_1(x_1) ) = x_1 43.13/11.93 POL( c_1(x_1) ) = x_1 43.13/11.93 POL( B_1(x_1) ) = 2x_1 + 2 43.13/11.93 43.13/11.93 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 43.13/11.93 43.13/11.93 b(x1) -> a(a(a(x1))) 43.13/11.93 a(d(x1)) -> d(b(x1)) 43.13/11.93 d(d(b(x1))) -> c(d(d(c(c(x1))))) 43.13/11.93 c(d(c(x1))) -> d(a(x1)) 43.13/11.93 43.13/11.93 43.13/11.93 ---------------------------------------- 43.13/11.93 43.13/11.93 (6) 43.13/11.93 Obligation: 43.13/11.93 Q DP problem: 43.13/11.93 The TRS P consists of the following rules: 43.13/11.93 43.13/11.93 A(d(x1)) -> B(x1) 43.13/11.93 C(d(c(x1))) -> D(a(x1)) 43.13/11.93 D(d(b(x1))) -> C(d(d(c(c(x1))))) 43.13/11.93 D(d(b(x1))) -> D(d(c(c(x1)))) 43.13/11.93 43.13/11.93 The TRS R consists of the following rules: 43.13/11.93 43.13/11.93 a(d(x1)) -> d(b(x1)) 43.13/11.93 b(x1) -> a(a(a(x1))) 43.13/11.93 c(d(c(x1))) -> d(a(x1)) 43.13/11.93 d(d(b(x1))) -> c(d(d(c(c(x1))))) 43.13/11.93 43.13/11.93 Q is empty. 43.13/11.93 We have to consider all minimal (P,Q,R)-chains. 43.13/11.93 ---------------------------------------- 43.13/11.93 43.13/11.93 (7) DependencyGraphProof (EQUIVALENT) 43.13/11.93 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. 43.13/11.93 ---------------------------------------- 43.13/11.93 43.13/11.93 (8) 43.13/11.93 Obligation: 43.13/11.93 Q DP problem: 43.13/11.93 The TRS P consists of the following rules: 43.13/11.93 43.13/11.93 D(d(b(x1))) -> C(d(d(c(c(x1))))) 43.13/11.93 C(d(c(x1))) -> D(a(x1)) 43.13/11.93 D(d(b(x1))) -> D(d(c(c(x1)))) 43.13/11.93 43.13/11.93 The TRS R consists of the following rules: 43.13/11.93 43.13/11.93 a(d(x1)) -> d(b(x1)) 43.13/11.93 b(x1) -> a(a(a(x1))) 43.13/11.93 c(d(c(x1))) -> d(a(x1)) 43.13/11.93 d(d(b(x1))) -> c(d(d(c(c(x1))))) 43.13/11.93 43.13/11.93 Q is empty. 43.13/11.93 We have to consider all minimal (P,Q,R)-chains. 43.13/11.93 ---------------------------------------- 43.13/11.93 43.13/11.93 (9) QDPOrderProof (EQUIVALENT) 43.13/11.93 We use the reduction pair processor [LPAR04,JAR06]. 43.13/11.93 43.13/11.93 43.13/11.93 The following pairs can be oriented strictly and are deleted. 43.13/11.93 43.13/11.93 D(d(b(x1))) -> D(d(c(c(x1)))) 43.13/11.93 The remaining pairs can at least be oriented weakly. 43.13/11.93 Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: 43.13/11.93 43.13/11.93 POL( C_1(x_1) ) = 1 43.13/11.93 POL( D_1(x_1) ) = max{0, 2x_1 - 1} 43.13/11.93 POL( d_1(x_1) ) = max{0, x_1 - 1} 43.13/11.93 POL( b_1(x_1) ) = 2 43.13/11.93 POL( c_1(x_1) ) = max{0, -2} 43.13/11.93 POL( a_1(x_1) ) = 1 43.13/11.93 43.13/11.93 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 43.13/11.93 43.13/11.93 d(d(b(x1))) -> c(d(d(c(c(x1))))) 43.13/11.93 c(d(c(x1))) -> d(a(x1)) 43.13/11.93 a(d(x1)) -> d(b(x1)) 43.13/11.93 b(x1) -> a(a(a(x1))) 43.13/11.93 43.13/11.93 43.13/11.93 ---------------------------------------- 43.13/11.93 43.13/11.93 (10) 43.13/11.93 Obligation: 43.13/11.93 Q DP problem: 43.13/11.93 The TRS P consists of the following rules: 43.13/11.93 43.13/11.93 D(d(b(x1))) -> C(d(d(c(c(x1))))) 43.13/11.93 C(d(c(x1))) -> D(a(x1)) 43.13/11.93 43.13/11.93 The TRS R consists of the following rules: 43.13/11.93 43.13/11.93 a(d(x1)) -> d(b(x1)) 43.13/11.93 b(x1) -> a(a(a(x1))) 43.13/11.93 c(d(c(x1))) -> d(a(x1)) 43.13/11.93 d(d(b(x1))) -> c(d(d(c(c(x1))))) 43.13/11.93 43.13/11.93 Q is empty. 43.13/11.93 We have to consider all minimal (P,Q,R)-chains. 43.13/11.93 ---------------------------------------- 43.13/11.93 43.13/11.93 (11) QDPOrderProof (EQUIVALENT) 43.13/11.93 We use the reduction pair processor [LPAR04,JAR06]. 43.13/11.93 43.13/11.93 43.13/11.93 The following pairs can be oriented strictly and are deleted. 43.13/11.93 43.13/11.93 C(d(c(x1))) -> D(a(x1)) 43.13/11.93 The remaining pairs can at least be oriented weakly. 43.13/11.93 Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: 43.13/11.93 43.13/11.93 <<< 43.13/11.93 POL(D(x_1)) = [[0A]] + [[-I, -I, 0A]] * x_1 43.13/11.93 >>> 43.13/11.93 43.13/11.93 <<< 43.13/11.93 POL(d(x_1)) = [[0A], [0A], [1A]] + [[-I, 0A, 0A], [1A, -I, 0A], [0A, 0A, 1A]] * x_1 43.13/11.93 >>> 43.13/11.93 43.13/11.93 <<< 43.13/11.93 POL(b(x_1)) = [[1A], [1A], [0A]] + [[0A, 0A, 1A], [0A, 0A, 1A], [-I, -I, 0A]] * x_1 43.13/11.93 >>> 43.13/11.93 43.13/11.93 <<< 43.13/11.93 POL(C(x_1)) = [[0A]] + [[-I, 0A, -I]] * x_1 43.13/11.93 >>> 43.13/11.93 43.13/11.93 <<< 43.13/11.93 POL(c(x_1)) = [[0A], [0A], [0A]] + [[0A, 0A, 0A], [-I, -I, 0A], [-I, -I, 0A]] * x_1 43.13/11.93 >>> 43.13/11.93 43.13/11.93 <<< 43.13/11.93 POL(a(x_1)) = [[0A], [0A], [0A]] + [[-I, -I, 0A], [0A, 0A, 1A], [-I, -I, 0A]] * x_1 43.13/11.93 >>> 43.13/11.93 43.13/11.93 43.13/11.93 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 43.13/11.93 43.13/11.93 d(d(b(x1))) -> c(d(d(c(c(x1))))) 43.13/11.93 c(d(c(x1))) -> d(a(x1)) 43.13/11.93 a(d(x1)) -> d(b(x1)) 43.13/11.93 b(x1) -> a(a(a(x1))) 43.13/11.93 43.13/11.93 43.13/11.93 ---------------------------------------- 43.13/11.93 43.13/11.93 (12) 43.13/11.93 Obligation: 43.13/11.93 Q DP problem: 43.13/11.93 The TRS P consists of the following rules: 43.13/11.93 43.13/11.93 D(d(b(x1))) -> C(d(d(c(c(x1))))) 43.13/11.93 43.13/11.93 The TRS R consists of the following rules: 43.13/11.93 43.13/11.93 a(d(x1)) -> d(b(x1)) 43.13/11.93 b(x1) -> a(a(a(x1))) 43.13/11.93 c(d(c(x1))) -> d(a(x1)) 43.13/11.93 d(d(b(x1))) -> c(d(d(c(c(x1))))) 43.13/11.93 43.13/11.93 Q is empty. 43.13/11.93 We have to consider all minimal (P,Q,R)-chains. 43.13/11.93 ---------------------------------------- 43.13/11.93 43.13/11.93 (13) DependencyGraphProof (EQUIVALENT) 43.13/11.93 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. 43.13/11.93 ---------------------------------------- 43.13/11.93 43.13/11.93 (14) 43.13/11.93 TRUE 43.47/12.06 EOF