8.27/3.04 YES 8.27/3.08 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 8.27/3.08 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 8.27/3.08 8.27/3.08 8.27/3.08 Termination w.r.t. Q of the given QTRS could be proven: 8.27/3.08 8.27/3.08 (0) QTRS 8.27/3.08 (1) QTRS Reverse [EQUIVALENT, 0 ms] 8.27/3.08 (2) QTRS 8.27/3.08 (3) DependencyPairsProof [EQUIVALENT, 7 ms] 8.27/3.08 (4) QDP 8.27/3.08 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 8.27/3.08 (6) AND 8.27/3.08 (7) QDP 8.27/3.08 (8) UsableRulesProof [EQUIVALENT, 0 ms] 8.27/3.08 (9) QDP 8.27/3.08 (10) QDPSizeChangeProof [EQUIVALENT, 1 ms] 8.27/3.08 (11) YES 8.27/3.08 (12) QDP 8.27/3.08 (13) QDPOrderProof [EQUIVALENT, 22 ms] 8.27/3.08 (14) QDP 8.27/3.08 (15) PisEmptyProof [EQUIVALENT, 0 ms] 8.27/3.08 (16) YES 8.27/3.08 8.27/3.08 8.27/3.08 ---------------------------------------- 8.27/3.08 8.27/3.08 (0) 8.27/3.08 Obligation: 8.27/3.08 Q restricted rewrite system: 8.27/3.08 The TRS R consists of the following rules: 8.27/3.08 8.27/3.08 f(x1) -> n(c(n(a(x1)))) 8.27/3.08 c(f(x1)) -> f(n(a(c(x1)))) 8.27/3.08 n(a(x1)) -> c(x1) 8.27/3.08 c(c(x1)) -> c(x1) 8.27/3.08 n(s(x1)) -> f(s(s(x1))) 8.27/3.08 n(f(x1)) -> f(n(x1)) 8.27/3.08 8.27/3.08 Q is empty. 8.27/3.08 8.27/3.08 ---------------------------------------- 8.27/3.08 8.27/3.08 (1) QTRS Reverse (EQUIVALENT) 8.27/3.08 We applied the QTRS Reverse Processor [REVERSE]. 8.27/3.08 ---------------------------------------- 8.27/3.08 8.27/3.08 (2) 8.27/3.08 Obligation: 8.27/3.08 Q restricted rewrite system: 8.27/3.08 The TRS R consists of the following rules: 8.27/3.08 8.27/3.08 f(x1) -> a(n(c(n(x1)))) 8.27/3.08 f(c(x1)) -> c(a(n(f(x1)))) 8.27/3.08 a(n(x1)) -> c(x1) 8.27/3.08 c(c(x1)) -> c(x1) 8.27/3.08 s(n(x1)) -> s(s(f(x1))) 8.27/3.08 f(n(x1)) -> n(f(x1)) 8.27/3.08 8.27/3.08 Q is empty. 8.27/3.08 8.27/3.08 ---------------------------------------- 8.27/3.08 8.27/3.08 (3) DependencyPairsProof (EQUIVALENT) 8.27/3.08 Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. 8.27/3.08 ---------------------------------------- 8.27/3.08 8.27/3.08 (4) 8.27/3.08 Obligation: 8.27/3.08 Q DP problem: 8.27/3.08 The TRS P consists of the following rules: 8.27/3.08 8.27/3.08 F(x1) -> A(n(c(n(x1)))) 8.27/3.08 F(x1) -> C(n(x1)) 8.27/3.08 F(c(x1)) -> C(a(n(f(x1)))) 8.27/3.08 F(c(x1)) -> A(n(f(x1))) 8.27/3.08 F(c(x1)) -> F(x1) 8.27/3.08 A(n(x1)) -> C(x1) 8.27/3.08 S(n(x1)) -> S(s(f(x1))) 8.27/3.08 S(n(x1)) -> S(f(x1)) 8.27/3.08 S(n(x1)) -> F(x1) 8.27/3.08 F(n(x1)) -> F(x1) 8.27/3.08 8.27/3.08 The TRS R consists of the following rules: 8.27/3.08 8.27/3.08 f(x1) -> a(n(c(n(x1)))) 8.27/3.08 f(c(x1)) -> c(a(n(f(x1)))) 8.27/3.08 a(n(x1)) -> c(x1) 8.27/3.08 c(c(x1)) -> c(x1) 8.27/3.08 s(n(x1)) -> s(s(f(x1))) 8.27/3.08 f(n(x1)) -> n(f(x1)) 8.27/3.08 8.27/3.08 Q is empty. 8.27/3.08 We have to consider all minimal (P,Q,R)-chains. 8.27/3.08 ---------------------------------------- 8.27/3.08 8.27/3.08 (5) DependencyGraphProof (EQUIVALENT) 8.27/3.08 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 6 less nodes. 8.27/3.08 ---------------------------------------- 8.27/3.08 8.27/3.08 (6) 8.27/3.08 Complex Obligation (AND) 8.27/3.08 8.27/3.08 ---------------------------------------- 8.27/3.08 8.27/3.08 (7) 8.27/3.08 Obligation: 8.27/3.08 Q DP problem: 8.27/3.08 The TRS P consists of the following rules: 8.27/3.08 8.27/3.08 F(n(x1)) -> F(x1) 8.27/3.08 F(c(x1)) -> F(x1) 8.27/3.08 8.27/3.08 The TRS R consists of the following rules: 8.27/3.08 8.27/3.08 f(x1) -> a(n(c(n(x1)))) 8.27/3.08 f(c(x1)) -> c(a(n(f(x1)))) 8.27/3.08 a(n(x1)) -> c(x1) 8.27/3.08 c(c(x1)) -> c(x1) 8.27/3.08 s(n(x1)) -> s(s(f(x1))) 8.27/3.08 f(n(x1)) -> n(f(x1)) 8.27/3.08 8.27/3.08 Q is empty. 8.27/3.08 We have to consider all minimal (P,Q,R)-chains. 8.27/3.08 ---------------------------------------- 8.27/3.08 8.27/3.08 (8) UsableRulesProof (EQUIVALENT) 8.27/3.08 We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. 8.27/3.08 ---------------------------------------- 8.27/3.08 8.27/3.08 (9) 8.27/3.08 Obligation: 8.27/3.08 Q DP problem: 8.27/3.08 The TRS P consists of the following rules: 8.27/3.08 8.27/3.08 F(n(x1)) -> F(x1) 8.27/3.08 F(c(x1)) -> F(x1) 8.27/3.08 8.27/3.08 R is empty. 8.27/3.08 Q is empty. 8.27/3.08 We have to consider all minimal (P,Q,R)-chains. 8.27/3.08 ---------------------------------------- 8.27/3.08 8.27/3.08 (10) QDPSizeChangeProof (EQUIVALENT) 8.27/3.08 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 8.27/3.08 8.27/3.08 From the DPs we obtained the following set of size-change graphs: 8.27/3.08 *F(n(x1)) -> F(x1) 8.27/3.08 The graph contains the following edges 1 > 1 8.27/3.08 8.27/3.08 8.27/3.08 *F(c(x1)) -> F(x1) 8.27/3.08 The graph contains the following edges 1 > 1 8.27/3.08 8.27/3.08 8.27/3.08 ---------------------------------------- 8.27/3.08 8.27/3.08 (11) 8.27/3.08 YES 8.27/3.08 8.27/3.08 ---------------------------------------- 8.27/3.08 8.27/3.08 (12) 8.27/3.08 Obligation: 8.27/3.08 Q DP problem: 8.27/3.08 The TRS P consists of the following rules: 8.27/3.08 8.27/3.08 S(n(x1)) -> S(f(x1)) 8.27/3.08 S(n(x1)) -> S(s(f(x1))) 8.27/3.08 8.27/3.08 The TRS R consists of the following rules: 8.27/3.08 8.27/3.08 f(x1) -> a(n(c(n(x1)))) 8.27/3.08 f(c(x1)) -> c(a(n(f(x1)))) 8.27/3.08 a(n(x1)) -> c(x1) 8.27/3.08 c(c(x1)) -> c(x1) 8.27/3.08 s(n(x1)) -> s(s(f(x1))) 8.27/3.08 f(n(x1)) -> n(f(x1)) 8.27/3.08 8.27/3.08 Q is empty. 8.27/3.08 We have to consider all minimal (P,Q,R)-chains. 8.27/3.08 ---------------------------------------- 8.27/3.08 8.27/3.08 (13) QDPOrderProof (EQUIVALENT) 8.27/3.08 We use the reduction pair processor [LPAR04,JAR06]. 8.27/3.08 8.27/3.08 8.27/3.08 The following pairs can be oriented strictly and are deleted. 8.27/3.08 8.27/3.08 S(n(x1)) -> S(f(x1)) 8.27/3.08 S(n(x1)) -> S(s(f(x1))) 8.27/3.08 The remaining pairs can at least be oriented weakly. 8.27/3.08 Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: 8.27/3.08 8.27/3.08 POL( S_1(x_1) ) = max{0, x_1 - 1} 8.27/3.08 POL( f_1(x_1) ) = 2x_1 8.27/3.08 POL( a_1(x_1) ) = max{0, -2} 8.27/3.08 POL( n_1(x_1) ) = 2x_1 + 2 8.27/3.08 POL( c_1(x_1) ) = max{0, -2} 8.27/3.08 POL( s_1(x_1) ) = max{0, -2} 8.27/3.08 8.27/3.08 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 8.27/3.08 8.27/3.08 f(x1) -> a(n(c(n(x1)))) 8.27/3.08 f(c(x1)) -> c(a(n(f(x1)))) 8.27/3.08 f(n(x1)) -> n(f(x1)) 8.27/3.08 s(n(x1)) -> s(s(f(x1))) 8.27/3.08 a(n(x1)) -> c(x1) 8.27/3.08 c(c(x1)) -> c(x1) 8.27/3.08 8.27/3.08 8.27/3.08 ---------------------------------------- 8.27/3.08 8.27/3.08 (14) 8.27/3.08 Obligation: 8.27/3.08 Q DP problem: 8.27/3.08 P is empty. 8.27/3.08 The TRS R consists of the following rules: 8.27/3.08 8.27/3.08 f(x1) -> a(n(c(n(x1)))) 8.27/3.08 f(c(x1)) -> c(a(n(f(x1)))) 8.27/3.08 a(n(x1)) -> c(x1) 8.27/3.08 c(c(x1)) -> c(x1) 8.27/3.08 s(n(x1)) -> s(s(f(x1))) 8.27/3.08 f(n(x1)) -> n(f(x1)) 8.27/3.08 8.27/3.08 Q is empty. 8.27/3.08 We have to consider all minimal (P,Q,R)-chains. 8.27/3.08 ---------------------------------------- 8.27/3.08 8.27/3.08 (15) PisEmptyProof (EQUIVALENT) 8.27/3.08 The TRS P is empty. Hence, there is no (P,Q,R) chain. 8.27/3.08 ---------------------------------------- 8.27/3.08 8.27/3.08 (16) 8.27/3.08 YES 8.70/3.12 EOF