5.64/1.79 YES 5.64/1.80 5.64/1.80 Problem: 5.64/1.80 f(x1) -> n(c(c(x1))) 5.64/1.80 c(f(x1)) -> f(c(c(x1))) 5.64/1.80 c(c(x1)) -> c(x1) 5.64/1.80 n(s(x1)) -> f(s(s(x1))) 5.64/1.80 n(f(x1)) -> f(n(x1)) 5.64/1.80 5.64/1.80 Proof: 5.64/1.80 Matrix Interpretation Processor: dim=3 5.64/1.80 5.64/1.80 interpretation: 5.64/1.80 [1 0 0] [0] 5.64/1.80 [s](x0) = [0 0 0]x0 + [1] 5.64/1.80 [0 1 0] [1], 5.64/1.80 5.64/1.80 [1 1 0] 5.64/1.80 [n](x0) = [0 0 1]x0 5.64/1.80 [0 1 1] , 5.64/1.80 5.64/1.80 [1 0 0] 5.64/1.80 [c](x0) = [0 0 0]x0 5.64/1.80 [0 0 0] , 5.64/1.80 5.64/1.80 5.64/1.80 [f](x0) = x0 5.64/1.80 5.64/1.80 orientation: 5.64/1.80 [1 0 0] 5.64/1.80 f(x1) = x1 >= [0 0 0]x1 = n(c(c(x1))) 5.64/1.80 [0 0 0] 5.64/1.80 5.64/1.80 [1 0 0] [1 0 0] 5.64/1.80 c(f(x1)) = [0 0 0]x1 >= [0 0 0]x1 = f(c(c(x1))) 5.64/1.80 [0 0 0] [0 0 0] 5.64/1.80 5.64/1.80 [1 0 0] [1 0 0] 5.64/1.80 c(c(x1)) = [0 0 0]x1 >= [0 0 0]x1 = c(x1) 5.64/1.80 [0 0 0] [0 0 0] 5.64/1.80 5.64/1.80 [1 0 0] [1] [1 0 0] [0] 5.64/1.80 n(s(x1)) = [0 1 0]x1 + [1] >= [0 0 0]x1 + [1] = f(s(s(x1))) 5.64/1.80 [0 1 0] [2] [0 0 0] [2] 5.64/1.80 5.64/1.80 [1 1 0] [1 1 0] 5.64/1.80 n(f(x1)) = [0 0 1]x1 >= [0 0 1]x1 = f(n(x1)) 5.64/1.80 [0 1 1] [0 1 1] 5.64/1.80 problem: 5.64/1.80 f(x1) -> n(c(c(x1))) 5.64/1.80 c(f(x1)) -> f(c(c(x1))) 5.64/1.80 c(c(x1)) -> c(x1) 5.64/1.80 n(f(x1)) -> f(n(x1)) 5.64/1.80 Matrix Interpretation Processor: dim=3 5.64/1.80 5.64/1.80 interpretation: 5.64/1.80 [1 1 0] 5.64/1.80 [n](x0) = [1 1 0]x0 5.64/1.80 [0 0 1] , 5.64/1.80 5.64/1.80 [1 0 0] 5.64/1.80 [c](x0) = [0 1 0]x0 5.64/1.80 [0 0 0] , 5.64/1.80 5.64/1.80 [1 1 1] [0] 5.64/1.80 [f](x0) = [1 1 0]x0 + [1] 5.64/1.80 [0 0 0] [0] 5.64/1.80 orientation: 5.64/1.80 [1 1 1] [0] [1 1 0] 5.64/1.80 f(x1) = [1 1 0]x1 + [1] >= [1 1 0]x1 = n(c(c(x1))) 5.64/1.80 [0 0 0] [0] [0 0 0] 5.64/1.80 5.64/1.80 [1 1 1] [0] [1 1 0] [0] 5.64/1.80 c(f(x1)) = [1 1 0]x1 + [1] >= [1 1 0]x1 + [1] = f(c(c(x1))) 5.64/1.80 [0 0 0] [0] [0 0 0] [0] 5.64/1.80 5.64/1.80 [1 0 0] [1 0 0] 5.64/1.80 c(c(x1)) = [0 1 0]x1 >= [0 1 0]x1 = c(x1) 5.64/1.80 [0 0 0] [0 0 0] 5.64/1.80 5.64/1.80 [2 2 1] [1] [2 2 1] [0] 5.64/1.80 n(f(x1)) = [2 2 1]x1 + [1] >= [2 2 0]x1 + [1] = f(n(x1)) 5.64/1.80 [0 0 0] [0] [0 0 0] [0] 5.64/1.80 problem: 5.64/1.80 f(x1) -> n(c(c(x1))) 5.64/1.80 c(f(x1)) -> f(c(c(x1))) 5.64/1.80 c(c(x1)) -> c(x1) 5.64/1.80 KBO Processor: 5.64/1.80 weight function: 5.64/1.80 w0 = 1 5.64/1.80 w(n) = w(f) = 1 5.64/1.80 w(c) = 0 5.64/1.80 precedence: 5.64/1.80 c > f > n 5.64/1.80 problem: 5.64/1.80 5.64/1.80 Qed 5.64/1.80 EOF