23.13/6.91 YES 23.54/6.99 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 23.54/6.99 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 23.54/6.99 23.54/6.99 23.54/6.99 Termination w.r.t. Q of the given QTRS could be proven: 23.54/6.99 23.54/6.99 (0) QTRS 23.54/6.99 (1) QTRS Reverse [EQUIVALENT, 0 ms] 23.54/6.99 (2) QTRS 23.54/6.99 (3) DependencyPairsProof [EQUIVALENT, 1 ms] 23.54/6.99 (4) QDP 23.54/6.99 (5) DependencyGraphProof [EQUIVALENT, 2 ms] 23.54/6.99 (6) QDP 23.54/6.99 (7) UsableRulesProof [EQUIVALENT, 0 ms] 23.54/6.99 (8) QDP 23.54/6.99 (9) MNOCProof [EQUIVALENT, 0 ms] 23.54/6.99 (10) QDP 23.54/6.99 (11) QDPOrderProof [EQUIVALENT, 167 ms] 23.54/6.99 (12) QDP 23.54/6.99 (13) QDPOrderProof [EQUIVALENT, 0 ms] 23.54/6.99 (14) QDP 23.54/6.99 (15) DependencyGraphProof [EQUIVALENT, 0 ms] 23.54/6.99 (16) TRUE 23.54/6.99 23.54/6.99 23.54/6.99 ---------------------------------------- 23.54/6.99 23.54/6.99 (0) 23.54/6.99 Obligation: 23.54/6.99 Q restricted rewrite system: 23.54/6.99 The TRS R consists of the following rules: 23.54/6.99 23.54/6.99 a(a(x1)) -> b(b(x1)) 23.54/6.99 c(c(b(x1))) -> d(c(a(x1))) 23.54/6.99 a(x1) -> d(c(c(x1))) 23.54/6.99 c(d(x1)) -> b(c(x1)) 23.54/6.99 23.54/6.99 Q is empty. 23.54/6.99 23.54/6.99 ---------------------------------------- 23.54/6.99 23.54/6.99 (1) QTRS Reverse (EQUIVALENT) 23.54/6.99 We applied the QTRS Reverse Processor [REVERSE]. 23.54/6.99 ---------------------------------------- 23.54/6.99 23.54/6.99 (2) 23.54/6.99 Obligation: 23.54/6.99 Q restricted rewrite system: 23.54/6.99 The TRS R consists of the following rules: 23.54/6.99 23.54/6.99 a(a(x1)) -> b(b(x1)) 23.54/6.99 b(c(c(x1))) -> a(c(d(x1))) 23.54/6.99 a(x1) -> c(c(d(x1))) 23.54/6.99 d(c(x1)) -> c(b(x1)) 23.54/6.99 23.54/6.99 Q is empty. 23.54/6.99 23.54/6.99 ---------------------------------------- 23.54/6.99 23.54/6.99 (3) DependencyPairsProof (EQUIVALENT) 23.54/6.99 Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. 23.54/6.99 ---------------------------------------- 23.54/6.99 23.54/6.99 (4) 23.54/6.99 Obligation: 23.54/6.99 Q DP problem: 23.54/6.99 The TRS P consists of the following rules: 23.54/6.99 23.54/6.99 A(a(x1)) -> B(b(x1)) 23.54/6.99 A(a(x1)) -> B(x1) 23.54/6.99 B(c(c(x1))) -> A(c(d(x1))) 23.54/6.99 B(c(c(x1))) -> D(x1) 23.54/6.99 A(x1) -> D(x1) 23.54/6.99 D(c(x1)) -> B(x1) 23.54/6.99 23.54/6.99 The TRS R consists of the following rules: 23.54/6.99 23.54/6.99 a(a(x1)) -> b(b(x1)) 23.54/6.99 b(c(c(x1))) -> a(c(d(x1))) 23.54/6.99 a(x1) -> c(c(d(x1))) 23.54/6.99 d(c(x1)) -> c(b(x1)) 23.54/6.99 23.54/6.99 Q is empty. 23.54/6.99 We have to consider all minimal (P,Q,R)-chains. 23.54/6.99 ---------------------------------------- 23.54/6.99 23.54/6.99 (5) DependencyGraphProof (EQUIVALENT) 23.54/6.99 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. 23.54/6.99 ---------------------------------------- 23.54/6.99 23.54/6.99 (6) 23.54/6.99 Obligation: 23.54/6.99 Q DP problem: 23.54/6.99 The TRS P consists of the following rules: 23.54/6.99 23.54/6.99 A(x1) -> D(x1) 23.54/6.99 D(c(x1)) -> B(x1) 23.54/6.99 B(c(c(x1))) -> A(c(d(x1))) 23.54/6.99 B(c(c(x1))) -> D(x1) 23.54/6.99 23.54/6.99 The TRS R consists of the following rules: 23.54/6.99 23.54/6.99 a(a(x1)) -> b(b(x1)) 23.54/6.99 b(c(c(x1))) -> a(c(d(x1))) 23.54/6.99 a(x1) -> c(c(d(x1))) 23.54/6.99 d(c(x1)) -> c(b(x1)) 23.54/6.99 23.54/6.99 Q is empty. 23.54/6.99 We have to consider all minimal (P,Q,R)-chains. 23.54/6.99 ---------------------------------------- 23.54/6.99 23.54/6.99 (7) UsableRulesProof (EQUIVALENT) 23.54/6.99 We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. 23.54/6.99 ---------------------------------------- 23.54/6.99 23.54/6.99 (8) 23.54/6.99 Obligation: 23.54/6.99 Q DP problem: 23.54/6.99 The TRS P consists of the following rules: 23.54/6.99 23.54/6.99 A(x1) -> D(x1) 23.54/6.99 D(c(x1)) -> B(x1) 23.54/6.99 B(c(c(x1))) -> A(c(d(x1))) 23.54/6.99 B(c(c(x1))) -> D(x1) 23.54/6.99 23.54/6.99 The TRS R consists of the following rules: 23.54/6.99 23.54/6.99 d(c(x1)) -> c(b(x1)) 23.54/6.99 b(c(c(x1))) -> a(c(d(x1))) 23.54/6.99 a(x1) -> c(c(d(x1))) 23.54/6.99 23.54/6.99 Q is empty. 23.54/6.99 We have to consider all minimal (P,Q,R)-chains. 23.54/6.99 ---------------------------------------- 23.54/6.99 23.54/6.99 (9) MNOCProof (EQUIVALENT) 23.54/6.99 We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R. 23.54/6.99 ---------------------------------------- 23.54/6.99 23.54/6.99 (10) 23.54/6.99 Obligation: 23.54/6.99 Q DP problem: 23.54/6.99 The TRS P consists of the following rules: 23.54/6.99 23.54/6.99 A(x1) -> D(x1) 23.54/6.99 D(c(x1)) -> B(x1) 23.54/6.99 B(c(c(x1))) -> A(c(d(x1))) 23.54/6.99 B(c(c(x1))) -> D(x1) 23.54/6.99 23.54/6.99 The TRS R consists of the following rules: 23.54/6.99 23.54/6.99 d(c(x1)) -> c(b(x1)) 23.54/6.99 b(c(c(x1))) -> a(c(d(x1))) 23.54/6.99 a(x1) -> c(c(d(x1))) 23.54/6.99 23.54/6.99 The set Q consists of the following terms: 23.54/6.99 23.54/6.99 d(c(x0)) 23.54/6.99 b(c(c(x0))) 23.54/6.99 a(x0) 23.54/6.99 23.54/6.99 We have to consider all minimal (P,Q,R)-chains. 23.54/6.99 ---------------------------------------- 23.54/6.99 23.54/6.99 (11) QDPOrderProof (EQUIVALENT) 23.54/6.99 We use the reduction pair processor [LPAR04,JAR06]. 23.54/6.99 23.54/6.99 23.54/6.99 The following pairs can be oriented strictly and are deleted. 23.54/6.99 23.54/6.99 B(c(c(x1))) -> D(x1) 23.54/6.99 The remaining pairs can at least be oriented weakly. 23.54/6.99 Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: 23.54/6.99 23.54/6.99 <<< 23.54/6.99 POL(A(x_1)) = [[0A]] + [[-I, 0A, 0A]] * x_1 23.54/6.99 >>> 23.54/6.99 23.54/6.99 <<< 23.54/6.99 POL(D(x_1)) = [[0A]] + [[-I, 0A, 0A]] * x_1 23.54/6.99 >>> 23.54/6.99 23.54/6.99 <<< 23.54/6.99 POL(c(x_1)) = [[1A], [0A], [0A]] + [[0A, 0A, 1A], [0A, 0A, -I], [-I, 0A, 0A]] * x_1 23.54/6.99 >>> 23.54/6.99 23.54/6.99 <<< 23.54/6.99 POL(B(x_1)) = [[0A]] + [[0A, 0A, 0A]] * x_1 23.54/6.99 >>> 23.54/6.99 23.54/6.99 <<< 23.54/6.99 POL(d(x_1)) = [[0A], [0A], [0A]] + [[0A, 0A, 1A], [-I, -I, 0A], [-I, -I, 0A]] * x_1 23.54/6.99 >>> 23.54/6.99 23.54/6.99 <<< 23.54/6.99 POL(b(x_1)) = [[0A], [0A], [0A]] + [[-I, 0A, 0A], [-I, 0A, 0A], [-I, 0A, 0A]] * x_1 23.54/6.99 >>> 23.54/6.99 23.54/6.99 <<< 23.54/6.99 POL(a(x_1)) = [[1A], [1A], [1A]] + [[0A, 0A, 1A], [0A, 0A, 1A], [0A, 0A, 1A]] * x_1 23.54/6.99 >>> 23.54/6.99 23.54/6.99 23.54/6.99 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 23.54/6.99 23.54/6.99 d(c(x1)) -> c(b(x1)) 23.54/6.99 b(c(c(x1))) -> a(c(d(x1))) 23.54/6.99 a(x1) -> c(c(d(x1))) 23.54/6.99 23.54/6.99 23.54/6.99 ---------------------------------------- 23.54/6.99 23.54/6.99 (12) 23.54/6.99 Obligation: 23.54/6.99 Q DP problem: 23.54/6.99 The TRS P consists of the following rules: 23.54/6.99 23.54/6.99 A(x1) -> D(x1) 23.54/6.99 D(c(x1)) -> B(x1) 23.54/6.99 B(c(c(x1))) -> A(c(d(x1))) 23.54/6.99 23.54/6.99 The TRS R consists of the following rules: 23.54/6.99 23.54/6.99 d(c(x1)) -> c(b(x1)) 23.54/6.99 b(c(c(x1))) -> a(c(d(x1))) 23.54/6.99 a(x1) -> c(c(d(x1))) 23.54/6.99 23.54/6.99 The set Q consists of the following terms: 23.54/6.99 23.54/6.99 d(c(x0)) 23.54/6.99 b(c(c(x0))) 23.54/6.99 a(x0) 23.54/6.99 23.54/6.99 We have to consider all minimal (P,Q,R)-chains. 23.54/6.99 ---------------------------------------- 23.54/6.99 23.54/6.99 (13) QDPOrderProof (EQUIVALENT) 23.54/6.99 We use the reduction pair processor [LPAR04,JAR06]. 23.54/6.99 23.54/6.99 23.54/6.99 The following pairs can be oriented strictly and are deleted. 23.54/6.99 23.54/6.99 A(x1) -> D(x1) 23.54/6.99 The remaining pairs can at least be oriented weakly. 23.54/6.99 Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: 23.54/6.99 23.54/6.99 <<< 23.54/6.99 POL(A(x_1)) = [[1A]] + [[0A, 0A, 1A]] * x_1 23.54/6.99 >>> 23.54/6.99 23.54/6.99 <<< 23.54/6.99 POL(D(x_1)) = [[0A]] + [[-I, -I, 0A]] * x_1 23.54/6.99 >>> 23.54/6.99 23.54/6.99 <<< 23.54/6.99 POL(c(x_1)) = [[0A], [1A], [-I]] + [[0A, 0A, 0A], [0A, 0A, 1A], [0A, -I, 0A]] * x_1 23.54/6.99 >>> 23.54/6.99 23.54/6.99 <<< 23.54/6.99 POL(B(x_1)) = [[0A]] + [[0A, -I, 0A]] * x_1 23.54/6.99 >>> 23.54/6.99 23.54/6.99 <<< 23.54/6.99 POL(d(x_1)) = [[0A], [0A], [0A]] + [[-I, -I, 0A], [-I, 0A, 1A], [-I, -I, 0A]] * x_1 23.54/6.99 >>> 23.54/6.99 23.54/6.99 <<< 23.54/6.99 POL(b(x_1)) = [[-I], [-I], [-I]] + [[0A, -I, -I], [0A, -I, 0A], [0A, -I, 0A]] * x_1 23.54/6.99 >>> 23.54/6.99 23.54/6.99 <<< 23.54/6.99 POL(a(x_1)) = [[1A], [1A], [1A]] + [[0A, 0A, 1A], [-I, 0A, 1A], [-I, 0A, 1A]] * x_1 23.54/6.99 >>> 23.54/6.99 23.54/6.99 23.54/6.99 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 23.54/6.99 23.54/6.99 d(c(x1)) -> c(b(x1)) 23.54/6.99 b(c(c(x1))) -> a(c(d(x1))) 23.54/6.99 a(x1) -> c(c(d(x1))) 23.54/6.99 23.54/6.99 23.54/6.99 ---------------------------------------- 23.54/6.99 23.54/6.99 (14) 23.54/6.99 Obligation: 23.54/6.99 Q DP problem: 23.54/6.99 The TRS P consists of the following rules: 23.54/6.99 23.54/6.99 D(c(x1)) -> B(x1) 23.54/6.99 B(c(c(x1))) -> A(c(d(x1))) 23.54/6.99 23.54/6.99 The TRS R consists of the following rules: 23.54/6.99 23.54/6.99 d(c(x1)) -> c(b(x1)) 23.54/6.99 b(c(c(x1))) -> a(c(d(x1))) 23.54/6.99 a(x1) -> c(c(d(x1))) 23.54/6.99 23.54/6.99 The set Q consists of the following terms: 23.54/6.99 23.54/6.99 d(c(x0)) 23.54/6.99 b(c(c(x0))) 23.54/6.99 a(x0) 23.54/6.99 23.54/6.99 We have to consider all minimal (P,Q,R)-chains. 23.54/6.99 ---------------------------------------- 23.54/6.99 23.54/6.99 (15) DependencyGraphProof (EQUIVALENT) 23.54/6.99 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes. 23.54/6.99 ---------------------------------------- 23.54/6.99 23.54/6.99 (16) 23.54/6.99 TRUE 24.02/7.19 EOF