35.91/10.10 YES 36.57/10.27 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 36.57/10.27 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 36.57/10.27 36.57/10.27 36.57/10.27 Termination w.r.t. Q of the given QTRS could be proven: 36.57/10.27 36.57/10.27 (0) QTRS 36.57/10.27 (1) DependencyPairsProof [EQUIVALENT, 1 ms] 36.57/10.27 (2) QDP 36.57/10.27 (3) DependencyGraphProof [EQUIVALENT, 0 ms] 36.57/10.27 (4) AND 36.57/10.27 (5) QDP 36.57/10.27 (6) QDPOrderProof [EQUIVALENT, 23 ms] 36.57/10.27 (7) QDP 36.57/10.27 (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] 36.57/10.27 (9) YES 36.57/10.27 (10) QDP 36.57/10.27 (11) QDPOrderProof [EQUIVALENT, 70 ms] 36.57/10.27 (12) QDP 36.57/10.27 (13) QDPOrderProof [EQUIVALENT, 209 ms] 36.57/10.27 (14) QDP 36.57/10.27 (15) QDPSizeChangeProof [EQUIVALENT, 0 ms] 36.57/10.27 (16) YES 36.57/10.27 36.57/10.27 36.57/10.27 ---------------------------------------- 36.57/10.27 36.57/10.27 (0) 36.57/10.27 Obligation: 36.57/10.27 Q restricted rewrite system: 36.57/10.27 The TRS R consists of the following rules: 36.57/10.27 36.57/10.27 a(b(b(x1))) -> P(a(b(x1))) 36.57/10.27 a(P(x1)) -> P(a(x(x1))) 36.57/10.27 a(x(x1)) -> x(a(x1)) 36.57/10.27 b(P(x1)) -> b(Q(x1)) 36.57/10.27 Q(x(x1)) -> a(Q(x1)) 36.57/10.27 Q(a(x1)) -> b(b(a(x1))) 36.57/10.27 36.57/10.27 Q is empty. 36.57/10.27 36.57/10.27 ---------------------------------------- 36.57/10.27 36.57/10.27 (1) DependencyPairsProof (EQUIVALENT) 36.57/10.27 Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. 36.57/10.27 ---------------------------------------- 36.57/10.27 36.57/10.27 (2) 36.57/10.27 Obligation: 36.57/10.27 Q DP problem: 36.57/10.27 The TRS P consists of the following rules: 36.57/10.27 36.57/10.27 A(b(b(x1))) -> A(b(x1)) 36.57/10.27 A(P(x1)) -> A(x(x1)) 36.57/10.27 A(x(x1)) -> A(x1) 36.57/10.27 B(P(x1)) -> B(Q(x1)) 36.57/10.27 B(P(x1)) -> Q^1(x1) 36.57/10.27 Q^1(x(x1)) -> A(Q(x1)) 36.57/10.27 Q^1(x(x1)) -> Q^1(x1) 36.57/10.27 Q^1(a(x1)) -> B(b(a(x1))) 36.57/10.27 Q^1(a(x1)) -> B(a(x1)) 36.57/10.27 36.57/10.27 The TRS R consists of the following rules: 36.57/10.27 36.57/10.27 a(b(b(x1))) -> P(a(b(x1))) 36.57/10.27 a(P(x1)) -> P(a(x(x1))) 36.57/10.27 a(x(x1)) -> x(a(x1)) 36.57/10.27 b(P(x1)) -> b(Q(x1)) 36.57/10.27 Q(x(x1)) -> a(Q(x1)) 36.57/10.27 Q(a(x1)) -> b(b(a(x1))) 36.57/10.27 36.57/10.27 Q is empty. 36.57/10.27 We have to consider all minimal (P,Q,R)-chains. 36.57/10.27 ---------------------------------------- 36.57/10.27 36.57/10.27 (3) DependencyGraphProof (EQUIVALENT) 36.57/10.27 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node. 36.57/10.27 ---------------------------------------- 36.57/10.27 36.57/10.27 (4) 36.57/10.27 Complex Obligation (AND) 36.57/10.27 36.57/10.27 ---------------------------------------- 36.57/10.27 36.57/10.27 (5) 36.57/10.27 Obligation: 36.57/10.27 Q DP problem: 36.57/10.27 The TRS P consists of the following rules: 36.57/10.27 36.57/10.27 A(P(x1)) -> A(x(x1)) 36.57/10.27 A(x(x1)) -> A(x1) 36.57/10.27 A(b(b(x1))) -> A(b(x1)) 36.57/10.27 36.57/10.27 The TRS R consists of the following rules: 36.57/10.27 36.57/10.27 a(b(b(x1))) -> P(a(b(x1))) 36.57/10.27 a(P(x1)) -> P(a(x(x1))) 36.57/10.27 a(x(x1)) -> x(a(x1)) 36.57/10.27 b(P(x1)) -> b(Q(x1)) 36.57/10.27 Q(x(x1)) -> a(Q(x1)) 36.57/10.27 Q(a(x1)) -> b(b(a(x1))) 36.57/10.27 36.57/10.27 Q is empty. 36.57/10.27 We have to consider all minimal (P,Q,R)-chains. 36.57/10.27 ---------------------------------------- 36.57/10.27 36.57/10.27 (6) QDPOrderProof (EQUIVALENT) 36.57/10.27 We use the reduction pair processor [LPAR04,JAR06]. 36.57/10.27 36.57/10.27 36.57/10.27 The following pairs can be oriented strictly and are deleted. 36.57/10.27 36.57/10.27 A(P(x1)) -> A(x(x1)) 36.57/10.27 The remaining pairs can at least be oriented weakly. 36.57/10.27 Used ordering: Polynomial interpretation [POLO]: 36.57/10.27 36.57/10.27 POL(A(x_1)) = x_1 36.57/10.27 POL(P(x_1)) = 1 + x_1 36.57/10.27 POL(Q(x_1)) = 0 36.57/10.27 POL(a(x_1)) = 0 36.57/10.27 POL(b(x_1)) = 0 36.57/10.27 POL(x(x_1)) = x_1 36.57/10.27 36.57/10.27 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 36.57/10.27 36.57/10.27 b(P(x1)) -> b(Q(x1)) 36.57/10.27 36.57/10.27 36.57/10.27 ---------------------------------------- 36.57/10.27 36.57/10.27 (7) 36.57/10.27 Obligation: 36.57/10.27 Q DP problem: 36.57/10.27 The TRS P consists of the following rules: 36.57/10.27 36.57/10.27 A(x(x1)) -> A(x1) 36.57/10.27 A(b(b(x1))) -> A(b(x1)) 36.57/10.27 36.57/10.27 The TRS R consists of the following rules: 36.57/10.27 36.57/10.27 a(b(b(x1))) -> P(a(b(x1))) 36.57/10.27 a(P(x1)) -> P(a(x(x1))) 36.57/10.27 a(x(x1)) -> x(a(x1)) 36.57/10.27 b(P(x1)) -> b(Q(x1)) 36.57/10.27 Q(x(x1)) -> a(Q(x1)) 36.57/10.27 Q(a(x1)) -> b(b(a(x1))) 36.57/10.27 36.57/10.27 Q is empty. 36.57/10.27 We have to consider all minimal (P,Q,R)-chains. 36.57/10.27 ---------------------------------------- 36.57/10.27 36.57/10.27 (8) QDPSizeChangeProof (EQUIVALENT) 36.57/10.27 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 36.57/10.27 36.57/10.27 From the DPs we obtained the following set of size-change graphs: 36.57/10.27 *A(x(x1)) -> A(x1) 36.57/10.27 The graph contains the following edges 1 > 1 36.57/10.27 36.57/10.27 36.57/10.27 *A(b(b(x1))) -> A(b(x1)) 36.57/10.27 The graph contains the following edges 1 > 1 36.57/10.27 36.57/10.27 36.57/10.27 ---------------------------------------- 36.57/10.27 36.57/10.27 (9) 36.57/10.27 YES 36.57/10.27 36.57/10.27 ---------------------------------------- 36.57/10.27 36.57/10.27 (10) 36.57/10.27 Obligation: 36.57/10.27 Q DP problem: 36.57/10.27 The TRS P consists of the following rules: 36.57/10.27 36.57/10.27 Q^1(x(x1)) -> Q^1(x1) 36.57/10.27 Q^1(a(x1)) -> B(b(a(x1))) 36.57/10.27 B(P(x1)) -> B(Q(x1)) 36.57/10.27 B(P(x1)) -> Q^1(x1) 36.57/10.27 Q^1(a(x1)) -> B(a(x1)) 36.57/10.27 36.57/10.27 The TRS R consists of the following rules: 36.57/10.27 36.57/10.27 a(b(b(x1))) -> P(a(b(x1))) 36.57/10.27 a(P(x1)) -> P(a(x(x1))) 36.57/10.27 a(x(x1)) -> x(a(x1)) 36.57/10.27 b(P(x1)) -> b(Q(x1)) 36.57/10.27 Q(x(x1)) -> a(Q(x1)) 36.57/10.27 Q(a(x1)) -> b(b(a(x1))) 36.57/10.27 36.57/10.27 Q is empty. 36.57/10.27 We have to consider all minimal (P,Q,R)-chains. 36.57/10.27 ---------------------------------------- 36.57/10.27 36.57/10.27 (11) QDPOrderProof (EQUIVALENT) 36.57/10.27 We use the reduction pair processor [LPAR04,JAR06]. 36.57/10.27 36.57/10.27 36.57/10.27 The following pairs can be oriented strictly and are deleted. 36.57/10.27 36.57/10.27 Q^1(a(x1)) -> B(b(a(x1))) 36.57/10.27 The remaining pairs can at least be oriented weakly. 36.57/10.27 Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: 36.57/10.27 36.57/10.27 POL( B_1(x_1) ) = max{0, 2x_1 - 1} 36.57/10.27 POL( a_1(x_1) ) = 1 36.57/10.27 POL( b_1(x_1) ) = max{0, -2} 36.57/10.27 POL( P_1(x_1) ) = 1 36.57/10.27 POL( x_1(x_1) ) = max{0, x_1 - 2} 36.57/10.27 POL( Q_1(x_1) ) = 1 36.57/10.27 POL( Q^1_1(x_1) ) = 1 36.57/10.27 36.57/10.27 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 36.57/10.27 36.57/10.27 a(b(b(x1))) -> P(a(b(x1))) 36.57/10.27 a(P(x1)) -> P(a(x(x1))) 36.57/10.27 a(x(x1)) -> x(a(x1)) 36.57/10.27 b(P(x1)) -> b(Q(x1)) 36.57/10.27 Q(x(x1)) -> a(Q(x1)) 36.57/10.27 Q(a(x1)) -> b(b(a(x1))) 36.57/10.27 36.57/10.27 36.57/10.27 ---------------------------------------- 36.57/10.27 36.57/10.27 (12) 36.57/10.27 Obligation: 36.57/10.27 Q DP problem: 36.57/10.27 The TRS P consists of the following rules: 36.57/10.27 36.57/10.27 Q^1(x(x1)) -> Q^1(x1) 36.57/10.27 B(P(x1)) -> B(Q(x1)) 36.57/10.27 B(P(x1)) -> Q^1(x1) 36.57/10.27 Q^1(a(x1)) -> B(a(x1)) 36.57/10.27 36.57/10.27 The TRS R consists of the following rules: 36.57/10.27 36.57/10.27 a(b(b(x1))) -> P(a(b(x1))) 36.57/10.27 a(P(x1)) -> P(a(x(x1))) 36.57/10.27 a(x(x1)) -> x(a(x1)) 36.57/10.27 b(P(x1)) -> b(Q(x1)) 36.57/10.27 Q(x(x1)) -> a(Q(x1)) 36.57/10.27 Q(a(x1)) -> b(b(a(x1))) 36.57/10.27 36.57/10.27 Q is empty. 36.57/10.27 We have to consider all minimal (P,Q,R)-chains. 36.57/10.27 ---------------------------------------- 36.57/10.27 36.57/10.27 (13) QDPOrderProof (EQUIVALENT) 36.57/10.27 We use the reduction pair processor [LPAR04,JAR06]. 36.57/10.27 36.57/10.27 36.57/10.27 The following pairs can be oriented strictly and are deleted. 36.57/10.27 36.57/10.27 B(P(x1)) -> B(Q(x1)) 36.57/10.27 The remaining pairs can at least be oriented weakly. 36.57/10.27 Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: 36.57/10.27 36.57/10.27 <<< 36.57/10.27 POL(Q^1(x_1)) = [[0A]] + [[0A, 0A, 0A]] * x_1 36.57/10.27 >>> 36.57/10.27 36.57/10.27 <<< 36.57/10.27 POL(x(x_1)) = [[0A], [1A], [0A]] + [[0A, 0A, -I], [-I, 1A, -I], [-I, -I, 0A]] * x_1 36.57/10.27 >>> 36.57/10.27 36.57/10.27 <<< 36.57/10.27 POL(B(x_1)) = [[0A]] + [[0A, 0A, 0A]] * x_1 36.57/10.27 >>> 36.57/10.27 36.57/10.27 <<< 36.57/10.27 POL(P(x_1)) = [[0A], [0A], [1A]] + [[0A, 0A, -I], [-I, -I, -I], [0A, 1A, 0A]] * x_1 36.57/10.27 >>> 36.57/10.27 36.57/10.27 <<< 36.57/10.27 POL(Q(x_1)) = [[0A], [0A], [0A]] + [[-I, 0A, -I], [-I, 0A, -I], [-I, 0A, -I]] * x_1 36.57/10.27 >>> 36.57/10.27 36.57/10.27 <<< 36.57/10.27 POL(a(x_1)) = [[-I], [0A], [0A]] + [[0A, 0A, 0A], [-I, 0A, -I], [0A, 0A, 1A]] * x_1 36.57/10.27 >>> 36.57/10.27 36.57/10.27 <<< 36.57/10.27 POL(b(x_1)) = [[0A], [0A], [0A]] + [[-I, -I, -I], [-I, -I, -I], [-I, -I, -I]] * x_1 36.57/10.27 >>> 36.57/10.27 36.57/10.27 36.57/10.27 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 36.57/10.27 36.57/10.27 Q(x(x1)) -> a(Q(x1)) 36.57/10.27 Q(a(x1)) -> b(b(a(x1))) 36.57/10.27 a(b(b(x1))) -> P(a(b(x1))) 36.57/10.27 a(P(x1)) -> P(a(x(x1))) 36.57/10.27 a(x(x1)) -> x(a(x1)) 36.57/10.27 b(P(x1)) -> b(Q(x1)) 36.57/10.27 36.57/10.27 36.57/10.27 ---------------------------------------- 36.57/10.27 36.57/10.27 (14) 36.57/10.27 Obligation: 36.57/10.27 Q DP problem: 36.57/10.27 The TRS P consists of the following rules: 36.57/10.27 36.57/10.27 Q^1(x(x1)) -> Q^1(x1) 36.57/10.27 B(P(x1)) -> Q^1(x1) 36.57/10.27 Q^1(a(x1)) -> B(a(x1)) 36.57/10.27 36.57/10.27 The TRS R consists of the following rules: 36.57/10.27 36.57/10.27 a(b(b(x1))) -> P(a(b(x1))) 36.57/10.27 a(P(x1)) -> P(a(x(x1))) 36.57/10.27 a(x(x1)) -> x(a(x1)) 36.57/10.27 b(P(x1)) -> b(Q(x1)) 36.57/10.27 Q(x(x1)) -> a(Q(x1)) 36.57/10.27 Q(a(x1)) -> b(b(a(x1))) 36.57/10.27 36.57/10.27 Q is empty. 36.57/10.27 We have to consider all minimal (P,Q,R)-chains. 36.57/10.27 ---------------------------------------- 36.57/10.27 36.57/10.27 (15) QDPSizeChangeProof (EQUIVALENT) 36.57/10.27 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 36.57/10.27 36.57/10.27 From the DPs we obtained the following set of size-change graphs: 36.57/10.27 *Q^1(x(x1)) -> Q^1(x1) 36.57/10.27 The graph contains the following edges 1 > 1 36.57/10.27 36.57/10.27 36.57/10.27 *Q^1(a(x1)) -> B(a(x1)) 36.57/10.27 The graph contains the following edges 1 >= 1 36.57/10.27 36.57/10.27 36.57/10.27 *B(P(x1)) -> Q^1(x1) 36.57/10.27 The graph contains the following edges 1 > 1 36.57/10.27 36.57/10.27 36.57/10.27 ---------------------------------------- 36.57/10.27 36.57/10.27 (16) 36.57/10.27 YES 36.88/10.43 EOF