3.98/1.32 YES 3.98/1.32 3.98/1.32 Problem: 3.98/1.32 a(p(x1)) -> p(a(A(x1))) 3.98/1.32 a(A(x1)) -> A(a(x1)) 3.98/1.32 p(A(A(x1))) -> a(p(x1)) 3.98/1.32 3.98/1.32 Proof: 3.98/1.32 Matrix Interpretation Processor: dim=3 3.98/1.32 3.98/1.32 interpretation: 3.98/1.32 [1 0 1] [1] 3.98/1.32 [A](x0) = [0 0 1]x0 + [0] 3.98/1.32 [0 1 0] [0], 3.98/1.32 3.98/1.32 [1 0 1] 3.98/1.32 [a](x0) = [0 0 1]x0 3.98/1.32 [0 1 0] , 3.98/1.32 3.98/1.32 [1 0 0] [0] 3.98/1.32 [p](x0) = [0 1 1]x0 + [1] 3.98/1.32 [0 1 1] [1] 3.98/1.32 orientation: 3.98/1.32 [1 1 1] [1] [1 1 1] [1] 3.98/1.32 a(p(x1)) = [0 1 1]x1 + [1] >= [0 1 1]x1 + [1] = p(a(A(x1))) 3.98/1.32 [0 1 1] [1] [0 1 1] [1] 3.98/1.32 3.98/1.32 [1 1 1] [1] [1 1 1] [1] 3.98/1.32 a(A(x1)) = [0 1 0]x1 + [0] >= [0 1 0]x1 + [0] = A(a(x1)) 3.98/1.32 [0 0 1] [0] [0 0 1] [0] 3.98/1.32 3.98/1.32 [1 1 1] [2] [1 1 1] [1] 3.98/1.32 p(A(A(x1))) = [0 1 1]x1 + [1] >= [0 1 1]x1 + [1] = a(p(x1)) 3.98/1.32 [0 1 1] [1] [0 1 1] [1] 3.98/1.32 problem: 3.98/1.32 a(p(x1)) -> p(a(A(x1))) 3.98/1.32 a(A(x1)) -> A(a(x1)) 3.98/1.32 Bounds Processor: 3.98/1.32 bound: 1 3.98/1.32 enrichment: match 3.98/1.32 automaton: 3.98/1.32 final states: {5,1} 3.98/1.32 transitions: 3.98/1.32 A1(8) -> 9* 3.98/1.32 a1(7) -> 8* 3.98/1.32 f30() -> 2* 3.98/1.32 p0(4) -> 1* 3.98/1.32 a0(2) -> 6* 3.98/1.32 a0(3) -> 4* 3.98/1.32 A0(2) -> 3* 3.98/1.32 A0(6) -> 5* 3.98/1.32 1 -> 8,6 3.98/1.32 2 -> 7* 3.98/1.32 5 -> 8,6 3.98/1.32 9 -> 4* 3.98/1.32 problem: 3.98/1.32 3.98/1.32 Qed 3.98/1.33 EOF