0.00/0.45 YES 0.00/0.45 property Termination 0.00/0.45 has value True 0.00/0.45 for SRS ( [a, c, c] -> [b, a, a], [b, a, b] -> [b, c, a], [a, a, c] ->= [c, a, b], [c, c, b] ->= [a, b, a], [b, c, b] ->= [b, a, c], [b, c, c] ->= [c, b, b], [a, a, b] ->= [a, c, a]) 0.00/0.45 reason 0.00/0.45 remap for 7 rules 0.00/0.45 property Termination 0.00/0.45 has value True 0.00/0.45 for SRS ( [0, 1, 1] -> [2, 0, 0], [2, 0, 2] -> [2, 1, 0], [0, 0, 1] ->= [1, 0, 2], [1, 1, 2] ->= [0, 2, 0], [2, 1, 2] ->= [2, 0, 1], [2, 1, 1] ->= [1, 2, 2], [0, 0, 2] ->= [0, 1, 0]) 0.00/0.45 reason 0.00/0.45 Matrix { monotone = Strict, domain = Natural, bits = 3, dim = 3, solver = Minisatapi, verbose = False, tracing = False} 0.00/0.45 interpretation 0.00/0.45 0 St / 1 1 0 \ 0.00/0.45 | 1 1 0 | 0.00/0.45 \ 0 0 1 / 0.00/0.45 1 St / 1 1 1 \ 0.00/0.45 | 1 1 1 | 0.00/0.45 \ 0 0 1 / 0.00/0.45 2 St / 2 0 0 \ 0.00/0.45 | 0 2 1 | 0.00/0.45 \ 0 0 1 / 0.00/0.45 [0, 1, 1] -> [2, 0, 0] 0.00/0.45 lhs rhs ge gt 0.00/0.45 St / 4 4 6 \ St / 4 4 0 \ True True 0.00/0.45 | 4 4 6 | | 4 4 1 | 0.00/0.45 \ 0 0 1 / \ 0 0 1 / 0.00/0.45 [2, 0, 2] -> [2, 1, 0] 0.00/0.45 lhs rhs ge gt 0.00/0.45 St / 4 4 2 \ St / 4 4 2 \ True False 0.00/0.45 | 4 4 3 | | 4 4 3 | 0.00/0.45 \ 0 0 1 / \ 0 0 1 / 0.00/0.45 [0, 0, 1] ->= [1, 0, 2] 0.00/0.45 lhs rhs ge gt 0.00/0.45 St / 4 4 4 \ St / 4 4 3 \ True True 0.00/0.45 | 4 4 4 | | 4 4 3 | 0.00/0.45 \ 0 0 1 / \ 0 0 1 / 0.00/0.45 [1, 1, 2] ->= [0, 2, 0] 0.00/0.45 lhs rhs ge gt 0.00/0.45 St / 4 4 5 \ St / 4 4 1 \ True True 0.00/0.45 | 4 4 5 | | 4 4 1 | 0.00/0.45 \ 0 0 1 / \ 0 0 1 / 0.00/0.45 [2, 1, 2] ->= [2, 0, 1] 0.00/0.45 lhs rhs ge gt 0.00/0.45 St / 4 4 4 \ St / 4 4 4 \ True False 0.00/0.45 | 4 4 5 | | 4 4 5 | 0.00/0.45 \ 0 0 1 / \ 0 0 1 / 0.00/0.45 [2, 1, 1] ->= [1, 2, 2] 0.00/0.46 lhs rhs ge gt 0.00/0.46 St / 4 4 6 \ St / 4 4 4 \ True True 0.00/0.46 | 4 4 7 | | 4 4 4 | 0.00/0.46 \ 0 0 1 / \ 0 0 1 / 0.00/0.46 [0, 0, 2] ->= [0, 1, 0] 0.00/0.46 lhs rhs ge gt 0.00/0.46 St / 4 4 2 \ St / 4 4 2 \ True False 0.00/0.46 | 4 4 2 | | 4 4 2 | 0.00/0.46 \ 0 0 1 / \ 0 0 1 / 0.00/0.46 property Termination 0.00/0.46 has value True 0.00/0.46 for SRS ( [2, 0, 2] -> [2, 1, 0], [2, 1, 2] ->= [2, 0, 1], [0, 0, 2] ->= [0, 1, 0]) 0.00/0.46 reason 0.00/0.46 weights 0.00/0.46 Map [(2, 3/1)] 0.00/0.46 0.00/0.46 property Termination 0.00/0.46 has value True 0.00/0.46 for SRS ( ) 0.00/0.46 reason 0.00/0.46 has no strict rules 0.00/0.46 0.00/0.46 ************************************************** 0.00/0.46 summary 0.00/0.46 ************************************************** 0.00/0.46 SRS with 7 rules on 3 letters Remap { tracing = False} 0.00/0.46 SRS with 7 rules on 3 letters Matrix { monotone = Strict, domain = Natural, bits = 3, dim = 3, solver = Minisatapi, verbose = False, tracing = False} 0.00/0.46 SRS with 3 rules on 3 letters weights 0.00/0.46 SRS with 0 rules on 0 letters has no strict rules 0.00/0.46 0.00/0.46 ************************************************** 0.00/0.46 (7, 3)\Matrix{\Natural}{3}(3, 3)\Weight(0, 0)[] 0.00/0.46 ************************************************** 0.00/0.46 let { done = Worker No_Strict_Rules;mo = Pre (Or_Else Count (IfSizeLeq 10000 GLPK Fail));wop = Or_Else (Worker (Weight { modus = mo})) Pass;weighted = \ m -> And_Then m wop;when_small = \ m -> And_Then (Worker (SizeAtmost 100)) m;when_medium = \ m -> And_Then (Worker (SizeAtmost 10000)) m;tiling = \ m w -> weighted (And_Then (Worker (Tiling { method = m,width = w})) (Worker Remap));matrix = \ mo dom dim bits -> weighted (Worker (Matrix { monotone = mo,domain = dom,dim = dim,bits = bits}));kbo = \ b -> weighted (Worker (KBO { bits = b,solver = Minisatapi}));method = Apply wop (Tree_Search_Preemptive 0 done ([ ] <> ([ when_medium (kbo 1), when_medium (And_Then (Worker Mirror) (kbo 1))] <> ((for [ 3, 4] (\ d -> when_small (matrix Strict Natural d 3))) <> (for [ 2, 3, 5, 8] (\ w -> tiling Overlap w))))))} 0.00/0.46 in Apply (Worker Remap) method 0.00/0.48 EOF