302.72/291.48 WORST_CASE(Omega(n^1), ?) 302.72/291.49 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 302.72/291.49 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 302.72/291.49 302.72/291.49 302.72/291.49 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 302.72/291.49 302.72/291.49 (0) CpxTRS 302.72/291.49 (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 302.72/291.49 (2) CpxTRS 302.72/291.49 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 302.72/291.49 (4) typed CpxTrs 302.72/291.49 (5) OrderProof [LOWER BOUND(ID), 0 ms] 302.72/291.49 (6) typed CpxTrs 302.72/291.49 (7) RewriteLemmaProof [LOWER BOUND(ID), 286 ms] 302.72/291.49 (8) BEST 302.72/291.49 (9) proven lower bound 302.72/291.49 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 302.72/291.49 (11) BOUNDS(n^1, INF) 302.72/291.49 (12) typed CpxTrs 302.72/291.49 302.72/291.49 302.72/291.49 ---------------------------------------- 302.72/291.49 302.72/291.49 (0) 302.72/291.49 Obligation: 302.72/291.49 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 302.72/291.49 302.72/291.49 302.72/291.49 The TRS R consists of the following rules: 302.72/291.49 302.72/291.49 half(x) -> if(ge(x, s(s(0))), x) 302.72/291.49 if(false, x) -> 0 302.72/291.49 if(true, x) -> s(half(p(p(x)))) 302.72/291.49 p(0) -> 0 302.72/291.49 p(s(x)) -> x 302.72/291.49 ge(x, 0) -> true 302.72/291.49 ge(0, s(x)) -> false 302.72/291.49 ge(s(x), s(y)) -> ge(x, y) 302.72/291.49 log(0) -> 0 302.72/291.49 log(s(x)) -> s(log(half(s(x)))) 302.72/291.49 302.72/291.49 S is empty. 302.72/291.49 Rewrite Strategy: FULL 302.72/291.49 ---------------------------------------- 302.72/291.49 302.72/291.49 (1) RenamingProof (BOTH BOUNDS(ID, ID)) 302.72/291.49 Renamed function symbols to avoid clashes with predefined symbol. 302.72/291.49 ---------------------------------------- 302.72/291.49 302.72/291.49 (2) 302.72/291.49 Obligation: 302.72/291.49 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 302.72/291.49 302.72/291.49 302.72/291.49 The TRS R consists of the following rules: 302.72/291.49 302.72/291.49 half(x) -> if(ge(x, s(s(0'))), x) 302.72/291.49 if(false, x) -> 0' 302.72/291.49 if(true, x) -> s(half(p(p(x)))) 302.72/291.49 p(0') -> 0' 302.72/291.49 p(s(x)) -> x 302.72/291.49 ge(x, 0') -> true 302.72/291.49 ge(0', s(x)) -> false 302.72/291.49 ge(s(x), s(y)) -> ge(x, y) 302.72/291.49 log(0') -> 0' 302.72/291.49 log(s(x)) -> s(log(half(s(x)))) 302.72/291.49 302.72/291.49 S is empty. 302.72/291.49 Rewrite Strategy: FULL 302.72/291.49 ---------------------------------------- 302.72/291.49 302.72/291.49 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 302.72/291.49 Infered types. 302.72/291.49 ---------------------------------------- 302.72/291.49 302.72/291.49 (4) 302.72/291.49 Obligation: 302.72/291.49 TRS: 302.72/291.49 Rules: 302.72/291.49 half(x) -> if(ge(x, s(s(0'))), x) 302.72/291.49 if(false, x) -> 0' 302.72/291.49 if(true, x) -> s(half(p(p(x)))) 302.72/291.49 p(0') -> 0' 302.72/291.49 p(s(x)) -> x 302.72/291.49 ge(x, 0') -> true 302.72/291.49 ge(0', s(x)) -> false 302.72/291.49 ge(s(x), s(y)) -> ge(x, y) 302.72/291.49 log(0') -> 0' 302.72/291.49 log(s(x)) -> s(log(half(s(x)))) 302.72/291.49 302.72/291.49 Types: 302.72/291.49 half :: 0':s -> 0':s 302.72/291.49 if :: false:true -> 0':s -> 0':s 302.72/291.49 ge :: 0':s -> 0':s -> false:true 302.72/291.49 s :: 0':s -> 0':s 302.72/291.49 0' :: 0':s 302.72/291.49 false :: false:true 302.72/291.49 true :: false:true 302.72/291.49 p :: 0':s -> 0':s 302.72/291.49 log :: 0':s -> 0':s 302.72/291.49 hole_0':s1_0 :: 0':s 302.72/291.49 hole_false:true2_0 :: false:true 302.72/291.49 gen_0':s3_0 :: Nat -> 0':s 302.72/291.49 302.72/291.49 ---------------------------------------- 302.72/291.49 302.72/291.49 (5) OrderProof (LOWER BOUND(ID)) 302.72/291.49 Heuristically decided to analyse the following defined symbols: 302.72/291.49 half, ge, log 302.72/291.49 302.72/291.49 They will be analysed ascendingly in the following order: 302.72/291.49 ge < half 302.72/291.49 half < log 302.72/291.49 302.72/291.49 ---------------------------------------- 302.72/291.49 302.72/291.49 (6) 302.72/291.49 Obligation: 302.72/291.49 TRS: 302.72/291.49 Rules: 302.72/291.49 half(x) -> if(ge(x, s(s(0'))), x) 302.72/291.49 if(false, x) -> 0' 302.72/291.49 if(true, x) -> s(half(p(p(x)))) 302.72/291.49 p(0') -> 0' 302.72/291.49 p(s(x)) -> x 302.72/291.49 ge(x, 0') -> true 302.72/291.49 ge(0', s(x)) -> false 302.72/291.49 ge(s(x), s(y)) -> ge(x, y) 302.72/291.49 log(0') -> 0' 302.72/291.49 log(s(x)) -> s(log(half(s(x)))) 302.72/291.49 302.72/291.49 Types: 302.72/291.49 half :: 0':s -> 0':s 302.72/291.49 if :: false:true -> 0':s -> 0':s 302.72/291.49 ge :: 0':s -> 0':s -> false:true 302.72/291.49 s :: 0':s -> 0':s 302.72/291.49 0' :: 0':s 302.72/291.49 false :: false:true 302.72/291.49 true :: false:true 302.72/291.49 p :: 0':s -> 0':s 302.72/291.49 log :: 0':s -> 0':s 302.72/291.49 hole_0':s1_0 :: 0':s 302.72/291.49 hole_false:true2_0 :: false:true 302.72/291.49 gen_0':s3_0 :: Nat -> 0':s 302.72/291.49 302.72/291.49 302.72/291.49 Generator Equations: 302.72/291.49 gen_0':s3_0(0) <=> 0' 302.72/291.49 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 302.72/291.49 302.72/291.49 302.72/291.49 The following defined symbols remain to be analysed: 302.72/291.49 ge, half, log 302.72/291.49 302.72/291.49 They will be analysed ascendingly in the following order: 302.72/291.49 ge < half 302.72/291.49 half < log 302.72/291.49 302.72/291.49 ---------------------------------------- 302.72/291.49 302.72/291.49 (7) RewriteLemmaProof (LOWER BOUND(ID)) 302.72/291.49 Proved the following rewrite lemma: 302.72/291.49 ge(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) 302.72/291.49 302.72/291.49 Induction Base: 302.72/291.49 ge(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) 302.72/291.49 true 302.72/291.49 302.72/291.49 Induction Step: 302.72/291.49 ge(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) 302.72/291.49 ge(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) ->_IH 302.72/291.49 true 302.72/291.49 302.72/291.49 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 302.72/291.49 ---------------------------------------- 302.72/291.49 302.72/291.49 (8) 302.72/291.49 Complex Obligation (BEST) 302.72/291.49 302.72/291.49 ---------------------------------------- 302.72/291.49 302.72/291.49 (9) 302.72/291.49 Obligation: 302.72/291.49 Proved the lower bound n^1 for the following obligation: 302.72/291.49 302.72/291.49 TRS: 302.72/291.49 Rules: 302.72/291.49 half(x) -> if(ge(x, s(s(0'))), x) 302.72/291.49 if(false, x) -> 0' 302.72/291.49 if(true, x) -> s(half(p(p(x)))) 302.72/291.49 p(0') -> 0' 302.72/291.49 p(s(x)) -> x 302.72/291.49 ge(x, 0') -> true 302.72/291.49 ge(0', s(x)) -> false 302.72/291.49 ge(s(x), s(y)) -> ge(x, y) 302.72/291.49 log(0') -> 0' 302.72/291.49 log(s(x)) -> s(log(half(s(x)))) 302.72/291.49 302.72/291.49 Types: 302.72/291.49 half :: 0':s -> 0':s 302.72/291.49 if :: false:true -> 0':s -> 0':s 302.72/291.49 ge :: 0':s -> 0':s -> false:true 302.72/291.49 s :: 0':s -> 0':s 302.72/291.49 0' :: 0':s 302.72/291.49 false :: false:true 302.72/291.49 true :: false:true 302.72/291.49 p :: 0':s -> 0':s 302.72/291.49 log :: 0':s -> 0':s 302.72/291.49 hole_0':s1_0 :: 0':s 302.72/291.49 hole_false:true2_0 :: false:true 302.72/291.49 gen_0':s3_0 :: Nat -> 0':s 302.72/291.49 302.72/291.49 302.72/291.49 Generator Equations: 302.72/291.49 gen_0':s3_0(0) <=> 0' 302.72/291.49 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 302.72/291.49 302.72/291.49 302.72/291.49 The following defined symbols remain to be analysed: 302.72/291.49 ge, half, log 302.72/291.49 302.72/291.49 They will be analysed ascendingly in the following order: 302.72/291.49 ge < half 302.72/291.49 half < log 302.72/291.49 302.72/291.49 ---------------------------------------- 302.72/291.49 302.72/291.49 (10) LowerBoundPropagationProof (FINISHED) 302.72/291.49 Propagated lower bound. 302.72/291.49 ---------------------------------------- 302.72/291.49 302.72/291.49 (11) 302.72/291.49 BOUNDS(n^1, INF) 302.72/291.49 302.72/291.49 ---------------------------------------- 302.72/291.49 302.72/291.49 (12) 302.72/291.49 Obligation: 302.72/291.49 TRS: 302.72/291.49 Rules: 302.72/291.49 half(x) -> if(ge(x, s(s(0'))), x) 302.72/291.49 if(false, x) -> 0' 302.72/291.49 if(true, x) -> s(half(p(p(x)))) 302.72/291.49 p(0') -> 0' 302.72/291.49 p(s(x)) -> x 302.72/291.49 ge(x, 0') -> true 302.72/291.49 ge(0', s(x)) -> false 302.72/291.49 ge(s(x), s(y)) -> ge(x, y) 302.72/291.49 log(0') -> 0' 302.72/291.49 log(s(x)) -> s(log(half(s(x)))) 302.72/291.49 302.72/291.49 Types: 302.72/291.49 half :: 0':s -> 0':s 302.72/291.49 if :: false:true -> 0':s -> 0':s 302.72/291.49 ge :: 0':s -> 0':s -> false:true 302.72/291.49 s :: 0':s -> 0':s 302.72/291.49 0' :: 0':s 302.72/291.49 false :: false:true 302.72/291.49 true :: false:true 302.72/291.49 p :: 0':s -> 0':s 302.72/291.49 log :: 0':s -> 0':s 302.72/291.49 hole_0':s1_0 :: 0':s 302.72/291.49 hole_false:true2_0 :: false:true 302.72/291.49 gen_0':s3_0 :: Nat -> 0':s 302.72/291.49 302.72/291.49 302.72/291.49 Lemmas: 302.72/291.49 ge(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) 302.72/291.49 302.72/291.49 302.72/291.49 Generator Equations: 302.72/291.49 gen_0':s3_0(0) <=> 0' 302.72/291.49 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 302.72/291.49 302.72/291.49 302.72/291.49 The following defined symbols remain to be analysed: 302.72/291.49 half, log 302.72/291.49 302.72/291.49 They will be analysed ascendingly in the following order: 302.72/291.49 half < log 302.72/291.52 EOF