309.44/291.46 WORST_CASE(Omega(n^1), ?) 309.50/291.46 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 309.50/291.46 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 309.50/291.46 309.50/291.46 309.50/291.46 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 309.50/291.46 309.50/291.46 (0) CpxTRS 309.50/291.46 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 309.50/291.46 (2) TRS for Loop Detection 309.50/291.46 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 309.50/291.46 (4) BEST 309.50/291.46 (5) proven lower bound 309.50/291.46 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 309.50/291.46 (7) BOUNDS(n^1, INF) 309.50/291.46 (8) TRS for Loop Detection 309.50/291.46 309.50/291.46 309.50/291.46 ---------------------------------------- 309.50/291.46 309.50/291.46 (0) 309.50/291.46 Obligation: 309.50/291.46 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 309.50/291.46 309.50/291.46 309.50/291.46 The TRS R consists of the following rules: 309.50/291.46 309.50/291.46 qsort(nil) -> nil 309.50/291.46 qsort(cons(x, xs)) -> append(qsort(filterlow(x, cons(x, xs))), cons(x, qsort(filterhigh(x, cons(x, xs))))) 309.50/291.46 filterlow(n, nil) -> nil 309.50/291.46 filterlow(n, cons(x, xs)) -> if1(ge(n, x), n, x, xs) 309.50/291.46 if1(true, n, x, xs) -> filterlow(n, xs) 309.50/291.46 if1(false, n, x, xs) -> cons(x, filterlow(n, xs)) 309.50/291.46 filterhigh(n, nil) -> nil 309.50/291.46 filterhigh(n, cons(x, xs)) -> if2(ge(x, n), n, x, xs) 309.50/291.46 if2(true, n, x, xs) -> filterhigh(n, xs) 309.50/291.46 if2(false, n, x, xs) -> cons(x, filterhigh(n, xs)) 309.50/291.46 ge(x, 0) -> true 309.50/291.46 ge(0, s(x)) -> false 309.50/291.46 ge(s(x), s(y)) -> ge(x, y) 309.50/291.46 append(nil, ys) -> ys 309.50/291.46 append(cons(x, xs), ys) -> cons(x, append(xs, ys)) 309.50/291.46 309.50/291.46 S is empty. 309.50/291.46 Rewrite Strategy: FULL 309.50/291.46 ---------------------------------------- 309.50/291.46 309.50/291.46 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 309.50/291.46 Transformed a relative TRS into a decreasing-loop problem. 309.50/291.46 ---------------------------------------- 309.50/291.46 309.50/291.46 (2) 309.50/291.46 Obligation: 309.50/291.46 Analyzing the following TRS for decreasing loops: 309.50/291.46 309.50/291.46 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 309.50/291.46 309.50/291.46 309.50/291.46 The TRS R consists of the following rules: 309.50/291.46 309.50/291.46 qsort(nil) -> nil 309.50/291.46 qsort(cons(x, xs)) -> append(qsort(filterlow(x, cons(x, xs))), cons(x, qsort(filterhigh(x, cons(x, xs))))) 309.50/291.46 filterlow(n, nil) -> nil 309.50/291.46 filterlow(n, cons(x, xs)) -> if1(ge(n, x), n, x, xs) 309.50/291.46 if1(true, n, x, xs) -> filterlow(n, xs) 309.50/291.46 if1(false, n, x, xs) -> cons(x, filterlow(n, xs)) 309.50/291.46 filterhigh(n, nil) -> nil 309.50/291.46 filterhigh(n, cons(x, xs)) -> if2(ge(x, n), n, x, xs) 309.50/291.46 if2(true, n, x, xs) -> filterhigh(n, xs) 309.50/291.46 if2(false, n, x, xs) -> cons(x, filterhigh(n, xs)) 309.50/291.46 ge(x, 0) -> true 309.50/291.46 ge(0, s(x)) -> false 309.50/291.46 ge(s(x), s(y)) -> ge(x, y) 309.50/291.46 append(nil, ys) -> ys 309.50/291.46 append(cons(x, xs), ys) -> cons(x, append(xs, ys)) 309.50/291.46 309.50/291.46 S is empty. 309.50/291.46 Rewrite Strategy: FULL 309.50/291.46 ---------------------------------------- 309.50/291.46 309.50/291.46 (3) DecreasingLoopProof (LOWER BOUND(ID)) 309.50/291.46 The following loop(s) give(s) rise to the lower bound Omega(n^1): 309.50/291.46 309.50/291.46 The rewrite sequence 309.50/291.46 309.50/291.46 append(cons(x, xs), ys) ->^+ cons(x, append(xs, ys)) 309.50/291.46 309.50/291.46 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 309.50/291.46 309.50/291.46 The pumping substitution is [xs / cons(x, xs)]. 309.50/291.46 309.50/291.46 The result substitution is [ ]. 309.50/291.46 309.50/291.46 309.50/291.46 309.50/291.46 309.50/291.46 ---------------------------------------- 309.50/291.46 309.50/291.46 (4) 309.50/291.46 Complex Obligation (BEST) 309.50/291.46 309.50/291.46 ---------------------------------------- 309.50/291.46 309.50/291.46 (5) 309.50/291.46 Obligation: 309.50/291.46 Proved the lower bound n^1 for the following obligation: 309.50/291.46 309.50/291.46 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 309.50/291.46 309.50/291.46 309.50/291.46 The TRS R consists of the following rules: 309.50/291.46 309.50/291.46 qsort(nil) -> nil 309.50/291.46 qsort(cons(x, xs)) -> append(qsort(filterlow(x, cons(x, xs))), cons(x, qsort(filterhigh(x, cons(x, xs))))) 309.50/291.46 filterlow(n, nil) -> nil 309.50/291.46 filterlow(n, cons(x, xs)) -> if1(ge(n, x), n, x, xs) 309.50/291.46 if1(true, n, x, xs) -> filterlow(n, xs) 309.50/291.46 if1(false, n, x, xs) -> cons(x, filterlow(n, xs)) 309.50/291.46 filterhigh(n, nil) -> nil 309.50/291.46 filterhigh(n, cons(x, xs)) -> if2(ge(x, n), n, x, xs) 309.50/291.46 if2(true, n, x, xs) -> filterhigh(n, xs) 309.50/291.46 if2(false, n, x, xs) -> cons(x, filterhigh(n, xs)) 309.50/291.46 ge(x, 0) -> true 309.50/291.46 ge(0, s(x)) -> false 309.50/291.46 ge(s(x), s(y)) -> ge(x, y) 309.50/291.46 append(nil, ys) -> ys 309.50/291.46 append(cons(x, xs), ys) -> cons(x, append(xs, ys)) 309.50/291.46 309.50/291.46 S is empty. 309.50/291.46 Rewrite Strategy: FULL 309.50/291.46 ---------------------------------------- 309.50/291.46 309.50/291.46 (6) LowerBoundPropagationProof (FINISHED) 309.50/291.46 Propagated lower bound. 309.50/291.46 ---------------------------------------- 309.50/291.46 309.50/291.46 (7) 309.50/291.46 BOUNDS(n^1, INF) 309.50/291.46 309.50/291.46 ---------------------------------------- 309.50/291.46 309.50/291.46 (8) 309.50/291.46 Obligation: 309.50/291.46 Analyzing the following TRS for decreasing loops: 309.50/291.46 309.50/291.46 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 309.50/291.46 309.50/291.46 309.50/291.46 The TRS R consists of the following rules: 309.50/291.46 309.50/291.46 qsort(nil) -> nil 309.50/291.46 qsort(cons(x, xs)) -> append(qsort(filterlow(x, cons(x, xs))), cons(x, qsort(filterhigh(x, cons(x, xs))))) 309.50/291.46 filterlow(n, nil) -> nil 309.50/291.46 filterlow(n, cons(x, xs)) -> if1(ge(n, x), n, x, xs) 309.50/291.46 if1(true, n, x, xs) -> filterlow(n, xs) 309.50/291.46 if1(false, n, x, xs) -> cons(x, filterlow(n, xs)) 309.50/291.46 filterhigh(n, nil) -> nil 309.50/291.46 filterhigh(n, cons(x, xs)) -> if2(ge(x, n), n, x, xs) 309.50/291.46 if2(true, n, x, xs) -> filterhigh(n, xs) 309.50/291.46 if2(false, n, x, xs) -> cons(x, filterhigh(n, xs)) 309.50/291.46 ge(x, 0) -> true 309.50/291.46 ge(0, s(x)) -> false 309.50/291.46 ge(s(x), s(y)) -> ge(x, y) 309.50/291.46 append(nil, ys) -> ys 309.50/291.46 append(cons(x, xs), ys) -> cons(x, append(xs, ys)) 309.50/291.46 309.50/291.46 S is empty. 309.50/291.46 Rewrite Strategy: FULL 309.50/291.49 EOF