301.23/291.51 WORST_CASE(Omega(n^1), ?) 301.23/291.56 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 301.23/291.56 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 301.23/291.56 301.23/291.56 301.23/291.56 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 301.23/291.56 301.23/291.56 (0) CpxTRS 301.23/291.56 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 301.23/291.56 (2) TRS for Loop Detection 301.23/291.56 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 301.23/291.56 (4) BEST 301.23/291.56 (5) proven lower bound 301.23/291.56 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 301.23/291.56 (7) BOUNDS(n^1, INF) 301.23/291.56 (8) TRS for Loop Detection 301.23/291.56 301.23/291.56 301.23/291.56 ---------------------------------------- 301.23/291.56 301.23/291.56 (0) 301.23/291.56 Obligation: 301.23/291.56 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 301.23/291.56 301.23/291.56 301.23/291.56 The TRS R consists of the following rules: 301.23/291.56 301.23/291.56 minus(0, y) -> 0 301.23/291.56 minus(s(x), y) -> if(gt(s(x), y), x, y) 301.23/291.56 if(true, x, y) -> s(minus(x, y)) 301.23/291.56 if(false, x, y) -> 0 301.23/291.56 mod(x, 0) -> 0 301.23/291.56 mod(x, s(y)) -> if1(lt(x, s(y)), x, s(y)) 301.23/291.56 if1(true, x, y) -> x 301.23/291.56 if1(false, x, y) -> mod(minus(x, y), y) 301.23/291.56 gt(0, y) -> false 301.23/291.56 gt(s(x), 0) -> true 301.23/291.56 gt(s(x), s(y)) -> gt(x, y) 301.23/291.56 lt(x, 0) -> false 301.23/291.56 lt(0, s(x)) -> true 301.23/291.56 lt(s(x), s(y)) -> lt(x, y) 301.23/291.56 301.23/291.56 S is empty. 301.23/291.56 Rewrite Strategy: FULL 301.23/291.56 ---------------------------------------- 301.23/291.56 301.23/291.56 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 301.23/291.56 Transformed a relative TRS into a decreasing-loop problem. 301.23/291.56 ---------------------------------------- 301.23/291.56 301.23/291.56 (2) 301.23/291.56 Obligation: 301.23/291.56 Analyzing the following TRS for decreasing loops: 301.23/291.56 301.23/291.56 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 301.23/291.56 301.23/291.56 301.23/291.56 The TRS R consists of the following rules: 301.23/291.56 301.23/291.56 minus(0, y) -> 0 301.23/291.56 minus(s(x), y) -> if(gt(s(x), y), x, y) 301.23/291.56 if(true, x, y) -> s(minus(x, y)) 301.23/291.56 if(false, x, y) -> 0 301.23/291.56 mod(x, 0) -> 0 301.23/291.56 mod(x, s(y)) -> if1(lt(x, s(y)), x, s(y)) 301.23/291.56 if1(true, x, y) -> x 301.23/291.56 if1(false, x, y) -> mod(minus(x, y), y) 301.23/291.56 gt(0, y) -> false 301.23/291.56 gt(s(x), 0) -> true 301.23/291.56 gt(s(x), s(y)) -> gt(x, y) 301.23/291.56 lt(x, 0) -> false 301.23/291.56 lt(0, s(x)) -> true 301.23/291.56 lt(s(x), s(y)) -> lt(x, y) 301.23/291.56 301.23/291.56 S is empty. 301.23/291.56 Rewrite Strategy: FULL 301.23/291.56 ---------------------------------------- 301.23/291.56 301.23/291.56 (3) DecreasingLoopProof (LOWER BOUND(ID)) 301.23/291.56 The following loop(s) give(s) rise to the lower bound Omega(n^1): 301.23/291.56 301.23/291.56 The rewrite sequence 301.23/291.56 301.23/291.56 lt(s(x), s(y)) ->^+ lt(x, y) 301.23/291.56 301.23/291.56 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 301.23/291.56 301.23/291.56 The pumping substitution is [x / s(x), y / s(y)]. 301.23/291.56 301.23/291.56 The result substitution is [ ]. 301.23/291.56 301.23/291.56 301.23/291.56 301.23/291.56 301.23/291.56 ---------------------------------------- 301.23/291.56 301.23/291.56 (4) 301.23/291.56 Complex Obligation (BEST) 301.23/291.56 301.23/291.56 ---------------------------------------- 301.23/291.56 301.23/291.56 (5) 301.23/291.56 Obligation: 301.23/291.56 Proved the lower bound n^1 for the following obligation: 301.23/291.56 301.23/291.56 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 301.23/291.56 301.23/291.56 301.23/291.56 The TRS R consists of the following rules: 301.23/291.56 301.23/291.56 minus(0, y) -> 0 301.23/291.56 minus(s(x), y) -> if(gt(s(x), y), x, y) 301.23/291.56 if(true, x, y) -> s(minus(x, y)) 301.23/291.56 if(false, x, y) -> 0 301.23/291.56 mod(x, 0) -> 0 301.23/291.56 mod(x, s(y)) -> if1(lt(x, s(y)), x, s(y)) 301.23/291.56 if1(true, x, y) -> x 301.23/291.56 if1(false, x, y) -> mod(minus(x, y), y) 301.23/291.56 gt(0, y) -> false 301.23/291.56 gt(s(x), 0) -> true 301.23/291.56 gt(s(x), s(y)) -> gt(x, y) 301.23/291.56 lt(x, 0) -> false 301.23/291.56 lt(0, s(x)) -> true 301.23/291.56 lt(s(x), s(y)) -> lt(x, y) 301.23/291.56 301.23/291.56 S is empty. 301.23/291.56 Rewrite Strategy: FULL 301.23/291.56 ---------------------------------------- 301.23/291.56 301.23/291.56 (6) LowerBoundPropagationProof (FINISHED) 301.23/291.56 Propagated lower bound. 301.23/291.56 ---------------------------------------- 301.23/291.56 301.23/291.56 (7) 301.23/291.56 BOUNDS(n^1, INF) 301.23/291.56 301.23/291.56 ---------------------------------------- 301.23/291.56 301.23/291.56 (8) 301.23/291.56 Obligation: 301.23/291.56 Analyzing the following TRS for decreasing loops: 301.23/291.56 301.23/291.56 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 301.23/291.56 301.23/291.56 301.23/291.56 The TRS R consists of the following rules: 301.23/291.56 301.23/291.56 minus(0, y) -> 0 301.23/291.56 minus(s(x), y) -> if(gt(s(x), y), x, y) 301.23/291.56 if(true, x, y) -> s(minus(x, y)) 301.23/291.56 if(false, x, y) -> 0 301.23/291.56 mod(x, 0) -> 0 301.23/291.56 mod(x, s(y)) -> if1(lt(x, s(y)), x, s(y)) 301.23/291.56 if1(true, x, y) -> x 301.23/291.56 if1(false, x, y) -> mod(minus(x, y), y) 301.23/291.56 gt(0, y) -> false 301.23/291.56 gt(s(x), 0) -> true 301.23/291.56 gt(s(x), s(y)) -> gt(x, y) 301.23/291.56 lt(x, 0) -> false 301.23/291.56 lt(0, s(x)) -> true 301.23/291.56 lt(s(x), s(y)) -> lt(x, y) 301.23/291.56 301.23/291.56 S is empty. 301.23/291.56 Rewrite Strategy: FULL 301.36/291.58 EOF