309.26/291.60 WORST_CASE(Omega(n^2), ?) 309.26/291.61 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 309.26/291.61 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 309.26/291.61 309.26/291.61 309.26/291.61 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). 309.26/291.61 309.26/291.61 (0) CpxTRS 309.26/291.61 (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 309.26/291.61 (2) CpxTRS 309.26/291.61 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 309.26/291.61 (4) typed CpxTrs 309.26/291.61 (5) OrderProof [LOWER BOUND(ID), 0 ms] 309.26/291.61 (6) typed CpxTrs 309.26/291.61 (7) RewriteLemmaProof [LOWER BOUND(ID), 314 ms] 309.26/291.61 (8) BEST 309.26/291.61 (9) proven lower bound 309.26/291.61 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 309.26/291.61 (11) BOUNDS(n^1, INF) 309.26/291.61 (12) typed CpxTrs 309.26/291.61 (13) RewriteLemmaProof [LOWER BOUND(ID), 11 ms] 309.26/291.61 (14) typed CpxTrs 309.26/291.61 (15) RewriteLemmaProof [LOWER BOUND(ID), 29 ms] 309.26/291.61 (16) typed CpxTrs 309.26/291.61 (17) RewriteLemmaProof [LOWER BOUND(ID), 62 ms] 309.26/291.61 (18) typed CpxTrs 309.26/291.61 (19) RewriteLemmaProof [LOWER BOUND(ID), 37 ms] 309.26/291.61 (20) proven lower bound 309.26/291.61 (21) LowerBoundPropagationProof [FINISHED, 0 ms] 309.26/291.61 (22) BOUNDS(n^2, INF) 309.26/291.61 309.26/291.61 309.26/291.61 ---------------------------------------- 309.26/291.61 309.26/291.61 (0) 309.26/291.61 Obligation: 309.26/291.61 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). 309.26/291.61 309.26/291.61 309.26/291.61 The TRS R consists of the following rules: 309.26/291.61 309.26/291.61 max(nil) -> 0 309.26/291.61 max(cons(x, nil)) -> x 309.26/291.61 max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) 309.26/291.61 if1(true, x, y, xs) -> max(cons(x, xs)) 309.26/291.61 if1(false, x, y, xs) -> max(cons(y, xs)) 309.26/291.61 del(x, nil) -> nil 309.26/291.61 del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) 309.26/291.61 if2(true, x, y, xs) -> xs 309.26/291.61 if2(false, x, y, xs) -> cons(y, del(x, xs)) 309.26/291.61 eq(0, 0) -> true 309.26/291.61 eq(0, s(y)) -> false 309.26/291.61 eq(s(x), 0) -> false 309.26/291.61 eq(s(x), s(y)) -> eq(x, y) 309.26/291.61 sort(nil) -> nil 309.26/291.61 sort(cons(x, xs)) -> cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs))))) 309.26/291.61 ge(0, 0) -> true 309.26/291.61 ge(s(x), 0) -> true 309.26/291.61 ge(0, s(x)) -> false 309.26/291.61 ge(s(x), s(y)) -> ge(x, y) 309.26/291.61 h(nil) -> nil 309.26/291.61 h(cons(x, xs)) -> cons(x, h(xs)) 309.26/291.61 309.26/291.61 S is empty. 309.26/291.61 Rewrite Strategy: FULL 309.26/291.61 ---------------------------------------- 309.26/291.61 309.26/291.61 (1) RenamingProof (BOTH BOUNDS(ID, ID)) 309.26/291.61 Renamed function symbols to avoid clashes with predefined symbol. 309.26/291.61 ---------------------------------------- 309.26/291.61 309.26/291.61 (2) 309.26/291.61 Obligation: 309.26/291.61 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). 309.26/291.61 309.26/291.61 309.26/291.61 The TRS R consists of the following rules: 309.26/291.61 309.26/291.61 max(nil) -> 0' 309.26/291.61 max(cons(x, nil)) -> x 309.26/291.61 max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) 309.26/291.61 if1(true, x, y, xs) -> max(cons(x, xs)) 309.26/291.61 if1(false, x, y, xs) -> max(cons(y, xs)) 309.26/291.61 del(x, nil) -> nil 309.26/291.61 del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) 309.26/291.61 if2(true, x, y, xs) -> xs 309.26/291.61 if2(false, x, y, xs) -> cons(y, del(x, xs)) 309.26/291.61 eq(0', 0') -> true 309.26/291.61 eq(0', s(y)) -> false 309.26/291.61 eq(s(x), 0') -> false 309.26/291.61 eq(s(x), s(y)) -> eq(x, y) 309.26/291.61 sort(nil) -> nil 309.26/291.61 sort(cons(x, xs)) -> cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs))))) 309.26/291.61 ge(0', 0') -> true 309.26/291.61 ge(s(x), 0') -> true 309.26/291.61 ge(0', s(x)) -> false 309.26/291.61 ge(s(x), s(y)) -> ge(x, y) 309.26/291.61 h(nil) -> nil 309.26/291.61 h(cons(x, xs)) -> cons(x, h(xs)) 309.26/291.61 309.26/291.61 S is empty. 309.26/291.61 Rewrite Strategy: FULL 309.26/291.61 ---------------------------------------- 309.26/291.61 309.26/291.61 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 309.26/291.61 Infered types. 309.26/291.61 ---------------------------------------- 309.26/291.61 309.26/291.61 (4) 309.26/291.61 Obligation: 309.26/291.61 TRS: 309.26/291.61 Rules: 309.26/291.61 max(nil) -> 0' 309.26/291.61 max(cons(x, nil)) -> x 309.26/291.61 max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) 309.26/291.61 if1(true, x, y, xs) -> max(cons(x, xs)) 309.26/291.61 if1(false, x, y, xs) -> max(cons(y, xs)) 309.26/291.61 del(x, nil) -> nil 309.26/291.61 del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) 309.26/291.61 if2(true, x, y, xs) -> xs 309.26/291.61 if2(false, x, y, xs) -> cons(y, del(x, xs)) 309.26/291.61 eq(0', 0') -> true 309.26/291.61 eq(0', s(y)) -> false 309.26/291.61 eq(s(x), 0') -> false 309.26/291.61 eq(s(x), s(y)) -> eq(x, y) 309.26/291.61 sort(nil) -> nil 309.26/291.61 sort(cons(x, xs)) -> cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs))))) 309.26/291.61 ge(0', 0') -> true 309.26/291.61 ge(s(x), 0') -> true 309.26/291.61 ge(0', s(x)) -> false 309.26/291.61 ge(s(x), s(y)) -> ge(x, y) 309.26/291.61 h(nil) -> nil 309.26/291.61 h(cons(x, xs)) -> cons(x, h(xs)) 309.26/291.61 309.26/291.61 Types: 309.26/291.61 max :: nil:cons -> 0':s 309.26/291.61 nil :: nil:cons 309.26/291.61 0' :: 0':s 309.26/291.61 cons :: 0':s -> nil:cons -> nil:cons 309.26/291.61 if1 :: true:false -> 0':s -> 0':s -> nil:cons -> 0':s 309.26/291.61 ge :: 0':s -> 0':s -> true:false 309.26/291.61 true :: true:false 309.26/291.61 false :: true:false 309.26/291.61 del :: 0':s -> nil:cons -> nil:cons 309.26/291.61 if2 :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons 309.26/291.61 eq :: 0':s -> 0':s -> true:false 309.26/291.61 s :: 0':s -> 0':s 309.26/291.61 sort :: nil:cons -> nil:cons 309.26/291.61 h :: nil:cons -> nil:cons 309.26/291.61 hole_0':s1_0 :: 0':s 309.26/291.61 hole_nil:cons2_0 :: nil:cons 309.26/291.61 hole_true:false3_0 :: true:false 309.26/291.61 gen_0':s4_0 :: Nat -> 0':s 309.26/291.61 gen_nil:cons5_0 :: Nat -> nil:cons 309.26/291.61 309.26/291.61 ---------------------------------------- 309.26/291.61 309.26/291.61 (5) OrderProof (LOWER BOUND(ID)) 309.26/291.61 Heuristically decided to analyse the following defined symbols: 309.26/291.61 max, ge, del, eq, sort, h 309.26/291.61 309.26/291.61 They will be analysed ascendingly in the following order: 309.26/291.61 ge < max 309.26/291.61 max < sort 309.26/291.61 eq < del 309.26/291.61 del < sort 309.26/291.61 h < sort 309.26/291.61 309.26/291.61 ---------------------------------------- 309.26/291.61 309.26/291.61 (6) 309.26/291.61 Obligation: 309.26/291.61 TRS: 309.26/291.61 Rules: 309.26/291.61 max(nil) -> 0' 309.26/291.61 max(cons(x, nil)) -> x 309.26/291.61 max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) 309.26/291.61 if1(true, x, y, xs) -> max(cons(x, xs)) 309.26/291.61 if1(false, x, y, xs) -> max(cons(y, xs)) 309.26/291.61 del(x, nil) -> nil 309.26/291.61 del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) 309.26/291.61 if2(true, x, y, xs) -> xs 309.26/291.61 if2(false, x, y, xs) -> cons(y, del(x, xs)) 309.26/291.61 eq(0', 0') -> true 309.26/291.61 eq(0', s(y)) -> false 309.26/291.61 eq(s(x), 0') -> false 309.26/291.61 eq(s(x), s(y)) -> eq(x, y) 309.26/291.61 sort(nil) -> nil 309.26/291.61 sort(cons(x, xs)) -> cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs))))) 309.26/291.61 ge(0', 0') -> true 309.26/291.61 ge(s(x), 0') -> true 309.26/291.61 ge(0', s(x)) -> false 309.26/291.61 ge(s(x), s(y)) -> ge(x, y) 309.26/291.61 h(nil) -> nil 309.26/291.61 h(cons(x, xs)) -> cons(x, h(xs)) 309.26/291.61 309.26/291.61 Types: 309.26/291.61 max :: nil:cons -> 0':s 309.26/291.61 nil :: nil:cons 309.26/291.61 0' :: 0':s 309.26/291.61 cons :: 0':s -> nil:cons -> nil:cons 309.26/291.61 if1 :: true:false -> 0':s -> 0':s -> nil:cons -> 0':s 309.26/291.61 ge :: 0':s -> 0':s -> true:false 309.26/291.61 true :: true:false 309.26/291.61 false :: true:false 309.26/291.61 del :: 0':s -> nil:cons -> nil:cons 309.26/291.61 if2 :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons 309.26/291.61 eq :: 0':s -> 0':s -> true:false 309.26/291.61 s :: 0':s -> 0':s 309.26/291.61 sort :: nil:cons -> nil:cons 309.26/291.61 h :: nil:cons -> nil:cons 309.26/291.61 hole_0':s1_0 :: 0':s 309.26/291.61 hole_nil:cons2_0 :: nil:cons 309.26/291.61 hole_true:false3_0 :: true:false 309.26/291.61 gen_0':s4_0 :: Nat -> 0':s 309.26/291.61 gen_nil:cons5_0 :: Nat -> nil:cons 309.26/291.61 309.26/291.61 309.26/291.61 Generator Equations: 309.26/291.61 gen_0':s4_0(0) <=> 0' 309.26/291.61 gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) 309.26/291.61 gen_nil:cons5_0(0) <=> nil 309.26/291.61 gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) 309.26/291.61 309.26/291.61 309.26/291.61 The following defined symbols remain to be analysed: 309.26/291.61 ge, max, del, eq, sort, h 309.26/291.61 309.26/291.61 They will be analysed ascendingly in the following order: 309.26/291.61 ge < max 309.26/291.61 max < sort 309.26/291.61 eq < del 309.26/291.61 del < sort 309.26/291.61 h < sort 309.26/291.61 309.26/291.61 ---------------------------------------- 309.26/291.61 309.26/291.61 (7) RewriteLemmaProof (LOWER BOUND(ID)) 309.26/291.61 Proved the following rewrite lemma: 309.26/291.61 ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) 309.26/291.61 309.26/291.61 Induction Base: 309.26/291.61 ge(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) 309.26/291.61 true 309.26/291.61 309.26/291.61 Induction Step: 309.26/291.61 ge(gen_0':s4_0(+(n7_0, 1)), gen_0':s4_0(+(n7_0, 1))) ->_R^Omega(1) 309.26/291.61 ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) ->_IH 309.26/291.61 true 309.26/291.61 309.26/291.61 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 309.26/291.61 ---------------------------------------- 309.26/291.61 309.26/291.61 (8) 309.26/291.61 Complex Obligation (BEST) 309.26/291.61 309.26/291.61 ---------------------------------------- 309.26/291.61 309.26/291.61 (9) 309.26/291.61 Obligation: 309.26/291.61 Proved the lower bound n^1 for the following obligation: 309.26/291.61 309.26/291.61 TRS: 309.26/291.61 Rules: 309.26/291.61 max(nil) -> 0' 309.26/291.61 max(cons(x, nil)) -> x 309.26/291.61 max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) 309.26/291.61 if1(true, x, y, xs) -> max(cons(x, xs)) 309.26/291.61 if1(false, x, y, xs) -> max(cons(y, xs)) 309.26/291.61 del(x, nil) -> nil 309.26/291.61 del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) 309.26/291.61 if2(true, x, y, xs) -> xs 309.26/291.61 if2(false, x, y, xs) -> cons(y, del(x, xs)) 309.26/291.61 eq(0', 0') -> true 309.26/291.61 eq(0', s(y)) -> false 309.26/291.61 eq(s(x), 0') -> false 309.26/291.61 eq(s(x), s(y)) -> eq(x, y) 309.26/291.61 sort(nil) -> nil 309.26/291.61 sort(cons(x, xs)) -> cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs))))) 309.26/291.61 ge(0', 0') -> true 309.26/291.61 ge(s(x), 0') -> true 309.26/291.61 ge(0', s(x)) -> false 309.26/291.61 ge(s(x), s(y)) -> ge(x, y) 309.26/291.61 h(nil) -> nil 309.26/291.61 h(cons(x, xs)) -> cons(x, h(xs)) 309.26/291.61 309.26/291.61 Types: 309.26/291.61 max :: nil:cons -> 0':s 309.26/291.61 nil :: nil:cons 309.26/291.61 0' :: 0':s 309.26/291.61 cons :: 0':s -> nil:cons -> nil:cons 309.26/291.61 if1 :: true:false -> 0':s -> 0':s -> nil:cons -> 0':s 309.26/291.61 ge :: 0':s -> 0':s -> true:false 309.26/291.61 true :: true:false 309.26/291.61 false :: true:false 309.26/291.61 del :: 0':s -> nil:cons -> nil:cons 309.26/291.61 if2 :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons 309.26/291.61 eq :: 0':s -> 0':s -> true:false 309.26/291.61 s :: 0':s -> 0':s 309.26/291.61 sort :: nil:cons -> nil:cons 309.26/291.61 h :: nil:cons -> nil:cons 309.26/291.61 hole_0':s1_0 :: 0':s 309.26/291.61 hole_nil:cons2_0 :: nil:cons 309.26/291.61 hole_true:false3_0 :: true:false 309.26/291.61 gen_0':s4_0 :: Nat -> 0':s 309.26/291.61 gen_nil:cons5_0 :: Nat -> nil:cons 309.26/291.61 309.26/291.61 309.26/291.61 Generator Equations: 309.26/291.61 gen_0':s4_0(0) <=> 0' 309.26/291.61 gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) 309.26/291.61 gen_nil:cons5_0(0) <=> nil 309.26/291.61 gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) 309.26/291.61 309.26/291.61 309.26/291.61 The following defined symbols remain to be analysed: 309.26/291.61 ge, max, del, eq, sort, h 309.26/291.61 309.26/291.61 They will be analysed ascendingly in the following order: 309.26/291.61 ge < max 309.26/291.61 max < sort 309.26/291.61 eq < del 309.26/291.61 del < sort 309.26/291.61 h < sort 309.26/291.61 309.26/291.61 ---------------------------------------- 309.26/291.61 309.26/291.61 (10) LowerBoundPropagationProof (FINISHED) 309.26/291.61 Propagated lower bound. 309.26/291.61 ---------------------------------------- 309.26/291.61 309.26/291.61 (11) 309.26/291.61 BOUNDS(n^1, INF) 309.26/291.61 309.26/291.61 ---------------------------------------- 309.26/291.61 309.26/291.61 (12) 309.26/291.61 Obligation: 309.26/291.61 TRS: 309.26/291.61 Rules: 309.26/291.61 max(nil) -> 0' 309.26/291.61 max(cons(x, nil)) -> x 309.26/291.61 max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) 309.26/291.61 if1(true, x, y, xs) -> max(cons(x, xs)) 309.26/291.61 if1(false, x, y, xs) -> max(cons(y, xs)) 309.26/291.61 del(x, nil) -> nil 309.26/291.61 del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) 309.26/291.61 if2(true, x, y, xs) -> xs 309.26/291.61 if2(false, x, y, xs) -> cons(y, del(x, xs)) 309.26/291.61 eq(0', 0') -> true 309.26/291.61 eq(0', s(y)) -> false 309.26/291.61 eq(s(x), 0') -> false 309.26/291.61 eq(s(x), s(y)) -> eq(x, y) 309.26/291.61 sort(nil) -> nil 309.26/291.61 sort(cons(x, xs)) -> cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs))))) 309.26/291.61 ge(0', 0') -> true 309.26/291.61 ge(s(x), 0') -> true 309.26/291.61 ge(0', s(x)) -> false 309.26/291.61 ge(s(x), s(y)) -> ge(x, y) 309.26/291.61 h(nil) -> nil 309.26/291.61 h(cons(x, xs)) -> cons(x, h(xs)) 309.26/291.61 309.26/291.61 Types: 309.26/291.61 max :: nil:cons -> 0':s 309.26/291.61 nil :: nil:cons 309.26/291.61 0' :: 0':s 309.26/291.61 cons :: 0':s -> nil:cons -> nil:cons 309.26/291.61 if1 :: true:false -> 0':s -> 0':s -> nil:cons -> 0':s 309.26/291.61 ge :: 0':s -> 0':s -> true:false 309.26/291.61 true :: true:false 309.26/291.61 false :: true:false 309.26/291.61 del :: 0':s -> nil:cons -> nil:cons 309.26/291.61 if2 :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons 309.26/291.61 eq :: 0':s -> 0':s -> true:false 309.26/291.61 s :: 0':s -> 0':s 309.26/291.61 sort :: nil:cons -> nil:cons 309.26/291.61 h :: nil:cons -> nil:cons 309.26/291.61 hole_0':s1_0 :: 0':s 309.26/291.61 hole_nil:cons2_0 :: nil:cons 309.26/291.61 hole_true:false3_0 :: true:false 309.26/291.61 gen_0':s4_0 :: Nat -> 0':s 309.26/291.61 gen_nil:cons5_0 :: Nat -> nil:cons 309.26/291.61 309.26/291.61 309.26/291.61 Lemmas: 309.26/291.61 ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) 309.26/291.61 309.26/291.61 309.26/291.61 Generator Equations: 309.26/291.61 gen_0':s4_0(0) <=> 0' 309.26/291.61 gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) 309.26/291.61 gen_nil:cons5_0(0) <=> nil 309.26/291.61 gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) 309.26/291.61 309.26/291.61 309.26/291.61 The following defined symbols remain to be analysed: 309.26/291.61 max, del, eq, sort, h 309.26/291.61 309.26/291.61 They will be analysed ascendingly in the following order: 309.26/291.61 max < sort 309.26/291.61 eq < del 309.26/291.61 del < sort 309.26/291.61 h < sort 309.26/291.61 309.26/291.61 ---------------------------------------- 309.26/291.61 309.26/291.61 (13) RewriteLemmaProof (LOWER BOUND(ID)) 309.26/291.61 Proved the following rewrite lemma: 309.26/291.61 max(gen_nil:cons5_0(+(1, n536_0))) -> gen_0':s4_0(0), rt in Omega(1 + n536_0) 309.26/291.61 309.26/291.61 Induction Base: 309.26/291.61 max(gen_nil:cons5_0(+(1, 0))) ->_R^Omega(1) 309.26/291.61 0' 309.26/291.61 309.26/291.61 Induction Step: 309.26/291.61 max(gen_nil:cons5_0(+(1, +(n536_0, 1)))) ->_R^Omega(1) 309.26/291.61 if1(ge(0', 0'), 0', 0', gen_nil:cons5_0(n536_0)) ->_L^Omega(1) 309.26/291.61 if1(true, 0', 0', gen_nil:cons5_0(n536_0)) ->_R^Omega(1) 309.26/291.61 max(cons(0', gen_nil:cons5_0(n536_0))) ->_IH 309.26/291.61 gen_0':s4_0(0) 309.26/291.61 309.26/291.61 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 309.26/291.61 ---------------------------------------- 309.26/291.61 309.26/291.61 (14) 309.26/291.61 Obligation: 309.26/291.61 TRS: 309.26/291.61 Rules: 309.26/291.61 max(nil) -> 0' 309.26/291.61 max(cons(x, nil)) -> x 309.26/291.61 max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) 309.26/291.61 if1(true, x, y, xs) -> max(cons(x, xs)) 309.26/291.61 if1(false, x, y, xs) -> max(cons(y, xs)) 309.26/291.61 del(x, nil) -> nil 309.26/291.61 del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) 309.26/291.61 if2(true, x, y, xs) -> xs 309.26/291.61 if2(false, x, y, xs) -> cons(y, del(x, xs)) 309.26/291.61 eq(0', 0') -> true 309.26/291.61 eq(0', s(y)) -> false 309.26/291.61 eq(s(x), 0') -> false 309.26/291.61 eq(s(x), s(y)) -> eq(x, y) 309.26/291.61 sort(nil) -> nil 309.26/291.61 sort(cons(x, xs)) -> cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs))))) 309.26/291.61 ge(0', 0') -> true 309.26/291.61 ge(s(x), 0') -> true 309.26/291.61 ge(0', s(x)) -> false 309.26/291.61 ge(s(x), s(y)) -> ge(x, y) 309.26/291.61 h(nil) -> nil 309.26/291.61 h(cons(x, xs)) -> cons(x, h(xs)) 309.26/291.61 309.26/291.61 Types: 309.26/291.61 max :: nil:cons -> 0':s 309.26/291.61 nil :: nil:cons 309.26/291.61 0' :: 0':s 309.26/291.61 cons :: 0':s -> nil:cons -> nil:cons 309.26/291.61 if1 :: true:false -> 0':s -> 0':s -> nil:cons -> 0':s 309.26/291.61 ge :: 0':s -> 0':s -> true:false 309.26/291.61 true :: true:false 309.26/291.61 false :: true:false 309.26/291.61 del :: 0':s -> nil:cons -> nil:cons 309.26/291.61 if2 :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons 309.26/291.61 eq :: 0':s -> 0':s -> true:false 309.26/291.61 s :: 0':s -> 0':s 309.26/291.61 sort :: nil:cons -> nil:cons 309.26/291.61 h :: nil:cons -> nil:cons 309.26/291.61 hole_0':s1_0 :: 0':s 309.26/291.61 hole_nil:cons2_0 :: nil:cons 309.26/291.61 hole_true:false3_0 :: true:false 309.26/291.61 gen_0':s4_0 :: Nat -> 0':s 309.26/291.61 gen_nil:cons5_0 :: Nat -> nil:cons 309.26/291.61 309.26/291.61 309.26/291.61 Lemmas: 309.26/291.61 ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) 309.26/291.61 max(gen_nil:cons5_0(+(1, n536_0))) -> gen_0':s4_0(0), rt in Omega(1 + n536_0) 309.26/291.61 309.26/291.61 309.26/291.61 Generator Equations: 309.26/291.61 gen_0':s4_0(0) <=> 0' 309.26/291.61 gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) 309.26/291.61 gen_nil:cons5_0(0) <=> nil 309.26/291.61 gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) 309.26/291.61 309.26/291.61 309.26/291.61 The following defined symbols remain to be analysed: 309.26/291.61 eq, del, sort, h 309.26/291.61 309.26/291.61 They will be analysed ascendingly in the following order: 309.26/291.61 eq < del 309.26/291.61 del < sort 309.26/291.61 h < sort 309.26/291.61 309.26/291.61 ---------------------------------------- 309.26/291.61 309.26/291.61 (15) RewriteLemmaProof (LOWER BOUND(ID)) 309.26/291.61 Proved the following rewrite lemma: 309.26/291.61 eq(gen_0':s4_0(n985_0), gen_0':s4_0(n985_0)) -> true, rt in Omega(1 + n985_0) 309.26/291.61 309.26/291.61 Induction Base: 309.26/291.61 eq(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) 309.26/291.61 true 309.26/291.61 309.26/291.61 Induction Step: 309.26/291.61 eq(gen_0':s4_0(+(n985_0, 1)), gen_0':s4_0(+(n985_0, 1))) ->_R^Omega(1) 309.26/291.61 eq(gen_0':s4_0(n985_0), gen_0':s4_0(n985_0)) ->_IH 309.26/291.61 true 309.26/291.61 309.26/291.61 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 309.26/291.61 ---------------------------------------- 309.26/291.61 309.26/291.61 (16) 309.26/291.61 Obligation: 309.26/291.61 TRS: 309.26/291.61 Rules: 309.26/291.61 max(nil) -> 0' 309.26/291.61 max(cons(x, nil)) -> x 309.26/291.61 max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) 309.26/291.61 if1(true, x, y, xs) -> max(cons(x, xs)) 309.26/291.61 if1(false, x, y, xs) -> max(cons(y, xs)) 309.26/291.61 del(x, nil) -> nil 309.26/291.61 del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) 309.26/291.61 if2(true, x, y, xs) -> xs 309.26/291.61 if2(false, x, y, xs) -> cons(y, del(x, xs)) 309.26/291.61 eq(0', 0') -> true 309.26/291.61 eq(0', s(y)) -> false 309.26/291.61 eq(s(x), 0') -> false 309.26/291.61 eq(s(x), s(y)) -> eq(x, y) 309.26/291.61 sort(nil) -> nil 309.26/291.61 sort(cons(x, xs)) -> cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs))))) 309.26/291.61 ge(0', 0') -> true 309.26/291.61 ge(s(x), 0') -> true 309.26/291.61 ge(0', s(x)) -> false 309.26/291.61 ge(s(x), s(y)) -> ge(x, y) 309.26/291.61 h(nil) -> nil 309.26/291.61 h(cons(x, xs)) -> cons(x, h(xs)) 309.26/291.61 309.26/291.61 Types: 309.26/291.61 max :: nil:cons -> 0':s 309.26/291.61 nil :: nil:cons 309.26/291.61 0' :: 0':s 309.26/291.61 cons :: 0':s -> nil:cons -> nil:cons 309.26/291.61 if1 :: true:false -> 0':s -> 0':s -> nil:cons -> 0':s 309.26/291.61 ge :: 0':s -> 0':s -> true:false 309.26/291.61 true :: true:false 309.26/291.61 false :: true:false 309.26/291.61 del :: 0':s -> nil:cons -> nil:cons 309.26/291.61 if2 :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons 309.26/291.61 eq :: 0':s -> 0':s -> true:false 309.26/291.61 s :: 0':s -> 0':s 309.26/291.61 sort :: nil:cons -> nil:cons 309.26/291.61 h :: nil:cons -> nil:cons 309.26/291.61 hole_0':s1_0 :: 0':s 309.26/291.61 hole_nil:cons2_0 :: nil:cons 309.26/291.61 hole_true:false3_0 :: true:false 309.26/291.61 gen_0':s4_0 :: Nat -> 0':s 309.26/291.61 gen_nil:cons5_0 :: Nat -> nil:cons 309.26/291.61 309.26/291.61 309.26/291.61 Lemmas: 309.26/291.61 ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) 309.26/291.61 max(gen_nil:cons5_0(+(1, n536_0))) -> gen_0':s4_0(0), rt in Omega(1 + n536_0) 309.26/291.61 eq(gen_0':s4_0(n985_0), gen_0':s4_0(n985_0)) -> true, rt in Omega(1 + n985_0) 309.26/291.61 309.26/291.61 309.26/291.61 Generator Equations: 309.26/291.61 gen_0':s4_0(0) <=> 0' 309.26/291.61 gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) 309.26/291.61 gen_nil:cons5_0(0) <=> nil 309.26/291.61 gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) 309.26/291.61 309.26/291.61 309.26/291.61 The following defined symbols remain to be analysed: 309.26/291.61 del, sort, h 309.26/291.61 309.26/291.61 They will be analysed ascendingly in the following order: 309.26/291.61 del < sort 309.26/291.61 h < sort 309.26/291.61 309.26/291.61 ---------------------------------------- 309.26/291.61 309.26/291.61 (17) RewriteLemmaProof (LOWER BOUND(ID)) 309.26/291.61 Proved the following rewrite lemma: 309.26/291.61 h(gen_nil:cons5_0(n1688_0)) -> gen_nil:cons5_0(n1688_0), rt in Omega(1 + n1688_0) 309.26/291.61 309.26/291.61 Induction Base: 309.26/291.61 h(gen_nil:cons5_0(0)) ->_R^Omega(1) 309.26/291.61 nil 309.26/291.61 309.26/291.61 Induction Step: 309.26/291.61 h(gen_nil:cons5_0(+(n1688_0, 1))) ->_R^Omega(1) 309.26/291.61 cons(0', h(gen_nil:cons5_0(n1688_0))) ->_IH 309.26/291.61 cons(0', gen_nil:cons5_0(c1689_0)) 309.26/291.61 309.26/291.61 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 309.26/291.61 ---------------------------------------- 309.26/291.61 309.26/291.61 (18) 309.26/291.61 Obligation: 309.26/291.61 TRS: 309.26/291.61 Rules: 309.26/291.61 max(nil) -> 0' 309.26/291.61 max(cons(x, nil)) -> x 309.26/291.61 max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) 309.26/291.61 if1(true, x, y, xs) -> max(cons(x, xs)) 309.26/291.61 if1(false, x, y, xs) -> max(cons(y, xs)) 309.26/291.61 del(x, nil) -> nil 309.26/291.61 del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) 309.26/291.61 if2(true, x, y, xs) -> xs 309.26/291.61 if2(false, x, y, xs) -> cons(y, del(x, xs)) 309.26/291.61 eq(0', 0') -> true 309.26/291.61 eq(0', s(y)) -> false 309.26/291.61 eq(s(x), 0') -> false 309.26/291.61 eq(s(x), s(y)) -> eq(x, y) 309.26/291.61 sort(nil) -> nil 309.26/291.61 sort(cons(x, xs)) -> cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs))))) 309.26/291.61 ge(0', 0') -> true 309.26/291.61 ge(s(x), 0') -> true 309.26/291.61 ge(0', s(x)) -> false 309.26/291.61 ge(s(x), s(y)) -> ge(x, y) 309.26/291.61 h(nil) -> nil 309.26/291.61 h(cons(x, xs)) -> cons(x, h(xs)) 309.26/291.61 309.26/291.61 Types: 309.26/291.61 max :: nil:cons -> 0':s 309.26/291.61 nil :: nil:cons 309.26/291.61 0' :: 0':s 309.26/291.61 cons :: 0':s -> nil:cons -> nil:cons 309.26/291.61 if1 :: true:false -> 0':s -> 0':s -> nil:cons -> 0':s 309.26/291.61 ge :: 0':s -> 0':s -> true:false 309.26/291.61 true :: true:false 309.26/291.61 false :: true:false 309.26/291.61 del :: 0':s -> nil:cons -> nil:cons 309.26/291.61 if2 :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons 309.26/291.61 eq :: 0':s -> 0':s -> true:false 309.26/291.61 s :: 0':s -> 0':s 309.26/291.61 sort :: nil:cons -> nil:cons 309.26/291.61 h :: nil:cons -> nil:cons 309.26/291.61 hole_0':s1_0 :: 0':s 309.26/291.61 hole_nil:cons2_0 :: nil:cons 309.26/291.61 hole_true:false3_0 :: true:false 309.26/291.61 gen_0':s4_0 :: Nat -> 0':s 309.26/291.61 gen_nil:cons5_0 :: Nat -> nil:cons 309.26/291.61 309.26/291.61 309.26/291.61 Lemmas: 309.26/291.61 ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) 309.26/291.61 max(gen_nil:cons5_0(+(1, n536_0))) -> gen_0':s4_0(0), rt in Omega(1 + n536_0) 309.26/291.61 eq(gen_0':s4_0(n985_0), gen_0':s4_0(n985_0)) -> true, rt in Omega(1 + n985_0) 309.26/291.61 h(gen_nil:cons5_0(n1688_0)) -> gen_nil:cons5_0(n1688_0), rt in Omega(1 + n1688_0) 309.26/291.61 309.26/291.61 309.26/291.61 Generator Equations: 309.26/291.61 gen_0':s4_0(0) <=> 0' 309.26/291.61 gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) 309.26/291.61 gen_nil:cons5_0(0) <=> nil 309.26/291.61 gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) 309.26/291.61 309.26/291.61 309.26/291.61 The following defined symbols remain to be analysed: 309.26/291.61 sort 309.26/291.61 ---------------------------------------- 309.26/291.61 309.26/291.61 (19) RewriteLemmaProof (LOWER BOUND(ID)) 309.26/291.61 Proved the following rewrite lemma: 309.26/291.61 sort(gen_nil:cons5_0(n1990_0)) -> gen_nil:cons5_0(n1990_0), rt in Omega(1 + n1990_0 + n1990_0^2) 309.26/291.61 309.26/291.61 Induction Base: 309.26/291.61 sort(gen_nil:cons5_0(0)) ->_R^Omega(1) 309.26/291.61 nil 309.26/291.61 309.26/291.61 Induction Step: 309.26/291.61 sort(gen_nil:cons5_0(+(n1990_0, 1))) ->_R^Omega(1) 309.26/291.61 cons(max(cons(0', gen_nil:cons5_0(n1990_0))), sort(h(del(max(cons(0', gen_nil:cons5_0(n1990_0))), cons(0', gen_nil:cons5_0(n1990_0)))))) ->_L^Omega(1 + n1990_0) 309.26/291.61 cons(gen_0':s4_0(0), sort(h(del(max(cons(0', gen_nil:cons5_0(n1990_0))), cons(0', gen_nil:cons5_0(n1990_0)))))) ->_L^Omega(1 + n1990_0) 309.26/291.61 cons(gen_0':s4_0(0), sort(h(del(gen_0':s4_0(0), cons(0', gen_nil:cons5_0(n1990_0)))))) ->_R^Omega(1) 309.26/291.61 cons(gen_0':s4_0(0), sort(h(if2(eq(gen_0':s4_0(0), 0'), gen_0':s4_0(0), 0', gen_nil:cons5_0(n1990_0))))) ->_L^Omega(1) 309.26/291.61 cons(gen_0':s4_0(0), sort(h(if2(true, gen_0':s4_0(0), 0', gen_nil:cons5_0(n1990_0))))) ->_R^Omega(1) 309.26/291.62 cons(gen_0':s4_0(0), sort(h(gen_nil:cons5_0(n1990_0)))) ->_L^Omega(1 + n1990_0) 309.26/291.62 cons(gen_0':s4_0(0), sort(gen_nil:cons5_0(n1990_0))) ->_IH 309.26/291.62 cons(gen_0':s4_0(0), gen_nil:cons5_0(c1991_0)) 309.26/291.62 309.26/291.62 We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). 309.26/291.62 ---------------------------------------- 309.26/291.62 309.26/291.62 (20) 309.26/291.62 Obligation: 309.26/291.62 Proved the lower bound n^2 for the following obligation: 309.26/291.62 309.26/291.62 TRS: 309.26/291.62 Rules: 309.26/291.62 max(nil) -> 0' 309.26/291.62 max(cons(x, nil)) -> x 309.26/291.62 max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) 309.26/291.62 if1(true, x, y, xs) -> max(cons(x, xs)) 309.26/291.62 if1(false, x, y, xs) -> max(cons(y, xs)) 309.26/291.62 del(x, nil) -> nil 309.26/291.62 del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) 309.26/291.62 if2(true, x, y, xs) -> xs 309.26/291.62 if2(false, x, y, xs) -> cons(y, del(x, xs)) 309.26/291.62 eq(0', 0') -> true 309.26/291.62 eq(0', s(y)) -> false 309.26/291.62 eq(s(x), 0') -> false 309.26/291.62 eq(s(x), s(y)) -> eq(x, y) 309.26/291.62 sort(nil) -> nil 309.26/291.62 sort(cons(x, xs)) -> cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs))))) 309.26/291.62 ge(0', 0') -> true 309.26/291.62 ge(s(x), 0') -> true 309.26/291.62 ge(0', s(x)) -> false 309.26/291.62 ge(s(x), s(y)) -> ge(x, y) 309.26/291.62 h(nil) -> nil 309.26/291.62 h(cons(x, xs)) -> cons(x, h(xs)) 309.26/291.62 309.26/291.62 Types: 309.26/291.62 max :: nil:cons -> 0':s 309.26/291.62 nil :: nil:cons 309.26/291.62 0' :: 0':s 309.26/291.62 cons :: 0':s -> nil:cons -> nil:cons 309.26/291.62 if1 :: true:false -> 0':s -> 0':s -> nil:cons -> 0':s 309.26/291.62 ge :: 0':s -> 0':s -> true:false 309.26/291.62 true :: true:false 309.26/291.62 false :: true:false 309.26/291.62 del :: 0':s -> nil:cons -> nil:cons 309.26/291.62 if2 :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons 309.26/291.62 eq :: 0':s -> 0':s -> true:false 309.26/291.62 s :: 0':s -> 0':s 309.26/291.62 sort :: nil:cons -> nil:cons 309.26/291.62 h :: nil:cons -> nil:cons 309.26/291.62 hole_0':s1_0 :: 0':s 309.26/291.62 hole_nil:cons2_0 :: nil:cons 309.26/291.62 hole_true:false3_0 :: true:false 309.26/291.62 gen_0':s4_0 :: Nat -> 0':s 309.26/291.62 gen_nil:cons5_0 :: Nat -> nil:cons 309.26/291.62 309.26/291.62 309.26/291.62 Lemmas: 309.26/291.62 ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) 309.26/291.62 max(gen_nil:cons5_0(+(1, n536_0))) -> gen_0':s4_0(0), rt in Omega(1 + n536_0) 309.26/291.62 eq(gen_0':s4_0(n985_0), gen_0':s4_0(n985_0)) -> true, rt in Omega(1 + n985_0) 309.26/291.62 h(gen_nil:cons5_0(n1688_0)) -> gen_nil:cons5_0(n1688_0), rt in Omega(1 + n1688_0) 309.26/291.62 309.26/291.62 309.26/291.62 Generator Equations: 309.26/291.62 gen_0':s4_0(0) <=> 0' 309.26/291.62 gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) 309.26/291.62 gen_nil:cons5_0(0) <=> nil 309.26/291.62 gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) 309.26/291.62 309.26/291.62 309.26/291.62 The following defined symbols remain to be analysed: 309.26/291.62 sort 309.26/291.62 ---------------------------------------- 309.26/291.62 309.26/291.62 (21) LowerBoundPropagationProof (FINISHED) 309.26/291.62 Propagated lower bound. 309.26/291.62 ---------------------------------------- 309.26/291.62 309.26/291.62 (22) 309.26/291.62 BOUNDS(n^2, INF) 309.26/291.65 EOF