335.63/291.49 WORST_CASE(Omega(n^1), ?) 335.63/291.50 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 335.63/291.50 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 335.63/291.50 335.63/291.50 335.63/291.50 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 335.63/291.50 335.63/291.50 (0) CpxTRS 335.63/291.50 (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 335.63/291.50 (2) CpxTRS 335.63/291.50 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 335.63/291.50 (4) typed CpxTrs 335.63/291.50 (5) OrderProof [LOWER BOUND(ID), 0 ms] 335.63/291.50 (6) typed CpxTrs 335.63/291.50 (7) RewriteLemmaProof [LOWER BOUND(ID), 276 ms] 335.63/291.50 (8) BEST 335.63/291.50 (9) proven lower bound 335.63/291.50 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 335.63/291.50 (11) BOUNDS(n^1, INF) 335.63/291.50 (12) typed CpxTrs 335.63/291.50 335.63/291.50 335.63/291.50 ---------------------------------------- 335.63/291.50 335.63/291.50 (0) 335.63/291.50 Obligation: 335.63/291.50 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 335.63/291.50 335.63/291.50 335.63/291.50 The TRS R consists of the following rules: 335.63/291.50 335.63/291.50 f(s(x)) -> f(id_inc(c(x, x))) 335.63/291.50 f(c(s(x), y)) -> g(c(x, y)) 335.63/291.50 g(c(s(x), y)) -> g(c(y, x)) 335.63/291.50 g(c(x, s(y))) -> g(c(y, x)) 335.63/291.50 g(c(x, x)) -> f(x) 335.63/291.50 id_inc(c(x, y)) -> c(id_inc(x), id_inc(y)) 335.63/291.50 id_inc(s(x)) -> s(id_inc(x)) 335.63/291.50 id_inc(0) -> 0 335.63/291.50 id_inc(0) -> s(0) 335.63/291.50 335.63/291.50 S is empty. 335.63/291.50 Rewrite Strategy: FULL 335.63/291.50 ---------------------------------------- 335.63/291.50 335.63/291.50 (1) RenamingProof (BOTH BOUNDS(ID, ID)) 335.63/291.50 Renamed function symbols to avoid clashes with predefined symbol. 335.63/291.50 ---------------------------------------- 335.63/291.50 335.63/291.50 (2) 335.63/291.50 Obligation: 335.63/291.50 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 335.63/291.50 335.63/291.50 335.63/291.50 The TRS R consists of the following rules: 335.63/291.50 335.63/291.50 f(s(x)) -> f(id_inc(c(x, x))) 335.63/291.50 f(c(s(x), y)) -> g(c(x, y)) 335.63/291.50 g(c(s(x), y)) -> g(c(y, x)) 335.63/291.50 g(c(x, s(y))) -> g(c(y, x)) 335.63/291.50 g(c(x, x)) -> f(x) 335.63/291.50 id_inc(c(x, y)) -> c(id_inc(x), id_inc(y)) 335.63/291.50 id_inc(s(x)) -> s(id_inc(x)) 335.63/291.50 id_inc(0') -> 0' 335.63/291.50 id_inc(0') -> s(0') 335.63/291.50 335.63/291.50 S is empty. 335.63/291.50 Rewrite Strategy: FULL 335.63/291.50 ---------------------------------------- 335.63/291.50 335.63/291.50 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 335.63/291.50 Infered types. 335.63/291.50 ---------------------------------------- 335.63/291.50 335.63/291.50 (4) 335.63/291.50 Obligation: 335.63/291.50 TRS: 335.63/291.50 Rules: 335.63/291.50 f(s(x)) -> f(id_inc(c(x, x))) 335.63/291.50 f(c(s(x), y)) -> g(c(x, y)) 335.63/291.50 g(c(s(x), y)) -> g(c(y, x)) 335.63/291.50 g(c(x, s(y))) -> g(c(y, x)) 335.63/291.50 g(c(x, x)) -> f(x) 335.63/291.50 id_inc(c(x, y)) -> c(id_inc(x), id_inc(y)) 335.63/291.50 id_inc(s(x)) -> s(id_inc(x)) 335.63/291.50 id_inc(0') -> 0' 335.63/291.50 id_inc(0') -> s(0') 335.63/291.50 335.63/291.50 Types: 335.63/291.50 f :: s:c:0' -> f:g 335.63/291.50 s :: s:c:0' -> s:c:0' 335.63/291.50 id_inc :: s:c:0' -> s:c:0' 335.63/291.50 c :: s:c:0' -> s:c:0' -> s:c:0' 335.63/291.50 g :: s:c:0' -> f:g 335.63/291.50 0' :: s:c:0' 335.63/291.50 hole_f:g1_0 :: f:g 335.63/291.50 hole_s:c:0'2_0 :: s:c:0' 335.63/291.50 gen_s:c:0'3_0 :: Nat -> s:c:0' 335.63/291.50 335.63/291.50 ---------------------------------------- 335.63/291.50 335.63/291.50 (5) OrderProof (LOWER BOUND(ID)) 335.63/291.50 Heuristically decided to analyse the following defined symbols: 335.63/291.50 f, id_inc, g 335.63/291.50 335.63/291.50 They will be analysed ascendingly in the following order: 335.63/291.50 id_inc < f 335.63/291.50 f = g 335.63/291.50 335.63/291.50 ---------------------------------------- 335.63/291.50 335.63/291.50 (6) 335.63/291.50 Obligation: 335.63/291.50 TRS: 335.63/291.50 Rules: 335.63/291.50 f(s(x)) -> f(id_inc(c(x, x))) 335.63/291.50 f(c(s(x), y)) -> g(c(x, y)) 335.63/291.50 g(c(s(x), y)) -> g(c(y, x)) 335.63/291.50 g(c(x, s(y))) -> g(c(y, x)) 335.63/291.50 g(c(x, x)) -> f(x) 335.63/291.50 id_inc(c(x, y)) -> c(id_inc(x), id_inc(y)) 335.63/291.50 id_inc(s(x)) -> s(id_inc(x)) 335.63/291.50 id_inc(0') -> 0' 335.63/291.50 id_inc(0') -> s(0') 335.63/291.50 335.63/291.50 Types: 335.63/291.50 f :: s:c:0' -> f:g 335.63/291.50 s :: s:c:0' -> s:c:0' 335.63/291.50 id_inc :: s:c:0' -> s:c:0' 335.63/291.50 c :: s:c:0' -> s:c:0' -> s:c:0' 335.63/291.50 g :: s:c:0' -> f:g 335.63/291.50 0' :: s:c:0' 335.63/291.50 hole_f:g1_0 :: f:g 335.63/291.50 hole_s:c:0'2_0 :: s:c:0' 335.63/291.50 gen_s:c:0'3_0 :: Nat -> s:c:0' 335.63/291.50 335.63/291.50 335.63/291.50 Generator Equations: 335.63/291.50 gen_s:c:0'3_0(0) <=> 0' 335.63/291.50 gen_s:c:0'3_0(+(x, 1)) <=> s(gen_s:c:0'3_0(x)) 335.63/291.50 335.63/291.50 335.63/291.50 The following defined symbols remain to be analysed: 335.63/291.50 id_inc, f, g 335.63/291.50 335.63/291.50 They will be analysed ascendingly in the following order: 335.63/291.50 id_inc < f 335.63/291.50 f = g 335.63/291.50 335.63/291.50 ---------------------------------------- 335.63/291.50 335.63/291.50 (7) RewriteLemmaProof (LOWER BOUND(ID)) 335.63/291.50 Proved the following rewrite lemma: 335.63/291.50 id_inc(gen_s:c:0'3_0(n5_0)) -> gen_s:c:0'3_0(n5_0), rt in Omega(1 + n5_0) 335.63/291.50 335.63/291.50 Induction Base: 335.63/291.50 id_inc(gen_s:c:0'3_0(0)) ->_R^Omega(1) 335.63/291.50 0' 335.63/291.50 335.63/291.50 Induction Step: 335.63/291.50 id_inc(gen_s:c:0'3_0(+(n5_0, 1))) ->_R^Omega(1) 335.63/291.50 s(id_inc(gen_s:c:0'3_0(n5_0))) ->_IH 335.63/291.50 s(gen_s:c:0'3_0(c6_0)) 335.63/291.50 335.63/291.50 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 335.63/291.50 ---------------------------------------- 335.63/291.50 335.63/291.50 (8) 335.63/291.50 Complex Obligation (BEST) 335.63/291.50 335.63/291.50 ---------------------------------------- 335.63/291.50 335.63/291.50 (9) 335.63/291.50 Obligation: 335.63/291.50 Proved the lower bound n^1 for the following obligation: 335.63/291.50 335.63/291.50 TRS: 335.63/291.50 Rules: 335.63/291.50 f(s(x)) -> f(id_inc(c(x, x))) 335.63/291.50 f(c(s(x), y)) -> g(c(x, y)) 335.63/291.50 g(c(s(x), y)) -> g(c(y, x)) 335.63/291.50 g(c(x, s(y))) -> g(c(y, x)) 335.63/291.50 g(c(x, x)) -> f(x) 335.63/291.50 id_inc(c(x, y)) -> c(id_inc(x), id_inc(y)) 335.63/291.50 id_inc(s(x)) -> s(id_inc(x)) 335.63/291.50 id_inc(0') -> 0' 335.63/291.50 id_inc(0') -> s(0') 335.63/291.50 335.63/291.50 Types: 335.63/291.50 f :: s:c:0' -> f:g 335.63/291.50 s :: s:c:0' -> s:c:0' 335.63/291.50 id_inc :: s:c:0' -> s:c:0' 335.63/291.50 c :: s:c:0' -> s:c:0' -> s:c:0' 335.63/291.50 g :: s:c:0' -> f:g 335.63/291.50 0' :: s:c:0' 335.63/291.50 hole_f:g1_0 :: f:g 335.63/291.50 hole_s:c:0'2_0 :: s:c:0' 335.63/291.50 gen_s:c:0'3_0 :: Nat -> s:c:0' 335.63/291.50 335.63/291.50 335.63/291.50 Generator Equations: 335.63/291.50 gen_s:c:0'3_0(0) <=> 0' 335.63/291.50 gen_s:c:0'3_0(+(x, 1)) <=> s(gen_s:c:0'3_0(x)) 335.63/291.50 335.63/291.50 335.63/291.50 The following defined symbols remain to be analysed: 335.63/291.50 id_inc, f, g 335.63/291.50 335.63/291.50 They will be analysed ascendingly in the following order: 335.63/291.50 id_inc < f 335.63/291.50 f = g 335.63/291.50 335.63/291.50 ---------------------------------------- 335.63/291.50 335.63/291.50 (10) LowerBoundPropagationProof (FINISHED) 335.63/291.50 Propagated lower bound. 335.63/291.50 ---------------------------------------- 335.63/291.50 335.63/291.50 (11) 335.63/291.50 BOUNDS(n^1, INF) 335.63/291.50 335.63/291.50 ---------------------------------------- 335.63/291.50 335.63/291.50 (12) 335.63/291.50 Obligation: 335.63/291.50 TRS: 335.63/291.50 Rules: 335.63/291.50 f(s(x)) -> f(id_inc(c(x, x))) 335.63/291.50 f(c(s(x), y)) -> g(c(x, y)) 335.63/291.50 g(c(s(x), y)) -> g(c(y, x)) 335.63/291.50 g(c(x, s(y))) -> g(c(y, x)) 335.63/291.50 g(c(x, x)) -> f(x) 335.63/291.50 id_inc(c(x, y)) -> c(id_inc(x), id_inc(y)) 335.63/291.50 id_inc(s(x)) -> s(id_inc(x)) 335.63/291.50 id_inc(0') -> 0' 335.63/291.50 id_inc(0') -> s(0') 335.63/291.50 335.63/291.50 Types: 335.63/291.50 f :: s:c:0' -> f:g 335.63/291.50 s :: s:c:0' -> s:c:0' 335.63/291.50 id_inc :: s:c:0' -> s:c:0' 335.63/291.50 c :: s:c:0' -> s:c:0' -> s:c:0' 335.63/291.50 g :: s:c:0' -> f:g 335.63/291.50 0' :: s:c:0' 335.63/291.50 hole_f:g1_0 :: f:g 335.63/291.50 hole_s:c:0'2_0 :: s:c:0' 335.63/291.50 gen_s:c:0'3_0 :: Nat -> s:c:0' 335.63/291.50 335.63/291.50 335.63/291.50 Lemmas: 335.63/291.50 id_inc(gen_s:c:0'3_0(n5_0)) -> gen_s:c:0'3_0(n5_0), rt in Omega(1 + n5_0) 335.63/291.50 335.63/291.50 335.63/291.50 Generator Equations: 335.63/291.50 gen_s:c:0'3_0(0) <=> 0' 335.63/291.50 gen_s:c:0'3_0(+(x, 1)) <=> s(gen_s:c:0'3_0(x)) 335.63/291.50 335.63/291.50 335.63/291.50 The following defined symbols remain to be analysed: 335.63/291.50 g, f 335.63/291.50 335.63/291.50 They will be analysed ascendingly in the following order: 335.63/291.50 f = g 369.44/300.11 EOF