325.86/291.53 WORST_CASE(Omega(n^2), ?) 325.86/291.54 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 325.86/291.54 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 325.86/291.54 325.86/291.54 325.86/291.54 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). 325.86/291.54 325.86/291.54 (0) CpxTRS 325.86/291.54 (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 325.86/291.54 (2) CpxTRS 325.86/291.54 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 325.86/291.54 (4) typed CpxTrs 325.86/291.54 (5) OrderProof [LOWER BOUND(ID), 0 ms] 325.86/291.54 (6) typed CpxTrs 325.86/291.54 (7) RewriteLemmaProof [LOWER BOUND(ID), 375 ms] 325.86/291.54 (8) BEST 325.86/291.54 (9) proven lower bound 325.86/291.54 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 325.86/291.54 (11) BOUNDS(n^1, INF) 325.86/291.54 (12) typed CpxTrs 325.86/291.54 (13) RewriteLemmaProof [LOWER BOUND(ID), 4065 ms] 325.86/291.54 (14) BEST 325.86/291.54 (15) proven lower bound 325.86/291.54 (16) LowerBoundPropagationProof [FINISHED, 0 ms] 325.86/291.54 (17) BOUNDS(n^2, INF) 325.86/291.54 (18) typed CpxTrs 325.86/291.54 (19) RewriteLemmaProof [LOWER BOUND(ID), 11 ms] 325.86/291.54 (20) typed CpxTrs 325.86/291.54 (21) RewriteLemmaProof [LOWER BOUND(ID), 345 ms] 325.86/291.54 (22) BOUNDS(1, INF) 325.86/291.54 325.86/291.54 325.86/291.54 ---------------------------------------- 325.86/291.54 325.86/291.54 (0) 325.86/291.54 Obligation: 325.86/291.54 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). 325.86/291.54 325.86/291.54 325.86/291.54 The TRS R consists of the following rules: 325.86/291.54 325.86/291.54 +(x, 0) -> x 325.86/291.54 +(0, x) -> x 325.86/291.54 +(s(x), s(y)) -> s(s(+(x, y))) 325.86/291.54 *(x, 0) -> 0 325.86/291.54 *(0, x) -> 0 325.86/291.54 *(s(x), s(y)) -> s(+(*(x, y), +(x, y))) 325.86/291.54 sum(nil) -> 0 325.86/291.54 sum(cons(x, l)) -> +(x, sum(l)) 325.86/291.54 prod(nil) -> s(0) 325.86/291.54 prod(cons(x, l)) -> *(x, prod(l)) 325.86/291.54 325.86/291.54 S is empty. 325.86/291.54 Rewrite Strategy: FULL 325.86/291.54 ---------------------------------------- 325.86/291.54 325.86/291.54 (1) RenamingProof (BOTH BOUNDS(ID, ID)) 325.86/291.54 Renamed function symbols to avoid clashes with predefined symbol. 325.86/291.54 ---------------------------------------- 325.86/291.54 325.86/291.54 (2) 325.86/291.54 Obligation: 325.86/291.54 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). 325.86/291.54 325.86/291.54 325.86/291.54 The TRS R consists of the following rules: 325.86/291.54 325.86/291.54 +'(x, 0') -> x 325.86/291.54 +'(0', x) -> x 325.86/291.54 +'(s(x), s(y)) -> s(s(+'(x, y))) 325.86/291.54 *'(x, 0') -> 0' 325.86/291.54 *'(0', x) -> 0' 325.86/291.54 *'(s(x), s(y)) -> s(+'(*'(x, y), +'(x, y))) 325.86/291.54 sum(nil) -> 0' 325.86/291.54 sum(cons(x, l)) -> +'(x, sum(l)) 325.86/291.54 prod(nil) -> s(0') 325.86/291.54 prod(cons(x, l)) -> *'(x, prod(l)) 325.86/291.54 325.86/291.54 S is empty. 325.86/291.54 Rewrite Strategy: FULL 325.86/291.54 ---------------------------------------- 325.86/291.54 325.86/291.54 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 325.86/291.54 Infered types. 325.86/291.54 ---------------------------------------- 325.86/291.54 325.86/291.54 (4) 325.86/291.54 Obligation: 325.86/291.54 TRS: 325.86/291.54 Rules: 325.86/291.54 +'(x, 0') -> x 325.86/291.54 +'(0', x) -> x 325.86/291.54 +'(s(x), s(y)) -> s(s(+'(x, y))) 325.86/291.54 *'(x, 0') -> 0' 325.86/291.54 *'(0', x) -> 0' 325.86/291.54 *'(s(x), s(y)) -> s(+'(*'(x, y), +'(x, y))) 325.86/291.54 sum(nil) -> 0' 325.86/291.54 sum(cons(x, l)) -> +'(x, sum(l)) 325.86/291.54 prod(nil) -> s(0') 325.86/291.54 prod(cons(x, l)) -> *'(x, prod(l)) 325.86/291.54 325.86/291.54 Types: 325.86/291.54 +' :: 0':s -> 0':s -> 0':s 325.86/291.54 0' :: 0':s 325.86/291.54 s :: 0':s -> 0':s 325.86/291.54 *' :: 0':s -> 0':s -> 0':s 325.86/291.54 sum :: nil:cons -> 0':s 325.86/291.54 nil :: nil:cons 325.86/291.54 cons :: 0':s -> nil:cons -> nil:cons 325.86/291.54 prod :: nil:cons -> 0':s 325.86/291.54 hole_0':s1_0 :: 0':s 325.86/291.54 hole_nil:cons2_0 :: nil:cons 325.86/291.54 gen_0':s3_0 :: Nat -> 0':s 325.86/291.54 gen_nil:cons4_0 :: Nat -> nil:cons 325.86/291.54 325.86/291.54 ---------------------------------------- 325.86/291.54 325.86/291.54 (5) OrderProof (LOWER BOUND(ID)) 325.86/291.54 Heuristically decided to analyse the following defined symbols: 325.86/291.54 +', *', sum, prod 325.86/291.54 325.86/291.54 They will be analysed ascendingly in the following order: 325.86/291.54 +' < *' 325.86/291.54 +' < sum 325.86/291.54 *' < prod 325.86/291.54 325.86/291.54 ---------------------------------------- 325.86/291.54 325.86/291.54 (6) 325.86/291.54 Obligation: 325.86/291.54 TRS: 325.86/291.54 Rules: 325.86/291.54 +'(x, 0') -> x 325.86/291.54 +'(0', x) -> x 325.86/291.54 +'(s(x), s(y)) -> s(s(+'(x, y))) 325.86/291.54 *'(x, 0') -> 0' 325.86/291.54 *'(0', x) -> 0' 325.86/291.54 *'(s(x), s(y)) -> s(+'(*'(x, y), +'(x, y))) 325.86/291.54 sum(nil) -> 0' 325.86/291.54 sum(cons(x, l)) -> +'(x, sum(l)) 325.86/291.54 prod(nil) -> s(0') 325.86/291.54 prod(cons(x, l)) -> *'(x, prod(l)) 325.86/291.54 325.86/291.54 Types: 325.86/291.54 +' :: 0':s -> 0':s -> 0':s 325.86/291.54 0' :: 0':s 325.86/291.54 s :: 0':s -> 0':s 325.86/291.54 *' :: 0':s -> 0':s -> 0':s 325.86/291.54 sum :: nil:cons -> 0':s 325.86/291.54 nil :: nil:cons 325.86/291.54 cons :: 0':s -> nil:cons -> nil:cons 325.86/291.54 prod :: nil:cons -> 0':s 325.86/291.54 hole_0':s1_0 :: 0':s 325.86/291.54 hole_nil:cons2_0 :: nil:cons 325.86/291.54 gen_0':s3_0 :: Nat -> 0':s 325.86/291.54 gen_nil:cons4_0 :: Nat -> nil:cons 325.86/291.54 325.86/291.54 325.86/291.54 Generator Equations: 325.86/291.54 gen_0':s3_0(0) <=> 0' 325.86/291.54 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 325.86/291.54 gen_nil:cons4_0(0) <=> nil 325.86/291.54 gen_nil:cons4_0(+(x, 1)) <=> cons(0', gen_nil:cons4_0(x)) 325.86/291.54 325.86/291.54 325.86/291.54 The following defined symbols remain to be analysed: 325.86/291.54 +', *', sum, prod 325.86/291.54 325.86/291.54 They will be analysed ascendingly in the following order: 325.86/291.54 +' < *' 325.86/291.54 +' < sum 325.86/291.54 *' < prod 325.86/291.54 325.86/291.54 ---------------------------------------- 325.86/291.54 325.86/291.54 (7) RewriteLemmaProof (LOWER BOUND(ID)) 325.86/291.54 Proved the following rewrite lemma: 325.86/291.54 +'(gen_0':s3_0(n6_0), gen_0':s3_0(n6_0)) -> gen_0':s3_0(*(2, n6_0)), rt in Omega(1 + n6_0) 325.86/291.54 325.86/291.54 Induction Base: 325.86/291.54 +'(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) 325.86/291.54 gen_0':s3_0(0) 325.86/291.54 325.86/291.54 Induction Step: 325.86/291.54 +'(gen_0':s3_0(+(n6_0, 1)), gen_0':s3_0(+(n6_0, 1))) ->_R^Omega(1) 325.86/291.54 s(s(+'(gen_0':s3_0(n6_0), gen_0':s3_0(n6_0)))) ->_IH 325.86/291.54 s(s(gen_0':s3_0(*(2, c7_0)))) 325.86/291.54 325.86/291.54 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 325.86/291.54 ---------------------------------------- 325.86/291.54 325.86/291.54 (8) 325.86/291.54 Complex Obligation (BEST) 325.86/291.54 325.86/291.54 ---------------------------------------- 325.86/291.54 325.86/291.54 (9) 325.86/291.54 Obligation: 325.86/291.54 Proved the lower bound n^1 for the following obligation: 325.86/291.54 325.86/291.54 TRS: 325.86/291.54 Rules: 325.86/291.54 +'(x, 0') -> x 325.86/291.54 +'(0', x) -> x 325.86/291.54 +'(s(x), s(y)) -> s(s(+'(x, y))) 325.86/291.54 *'(x, 0') -> 0' 325.86/291.54 *'(0', x) -> 0' 325.86/291.54 *'(s(x), s(y)) -> s(+'(*'(x, y), +'(x, y))) 325.86/291.54 sum(nil) -> 0' 325.86/291.54 sum(cons(x, l)) -> +'(x, sum(l)) 325.86/291.54 prod(nil) -> s(0') 325.86/291.54 prod(cons(x, l)) -> *'(x, prod(l)) 325.86/291.54 325.86/291.54 Types: 325.86/291.54 +' :: 0':s -> 0':s -> 0':s 325.86/291.54 0' :: 0':s 325.86/291.54 s :: 0':s -> 0':s 325.86/291.54 *' :: 0':s -> 0':s -> 0':s 325.86/291.54 sum :: nil:cons -> 0':s 325.86/291.54 nil :: nil:cons 325.86/291.54 cons :: 0':s -> nil:cons -> nil:cons 325.86/291.54 prod :: nil:cons -> 0':s 325.86/291.54 hole_0':s1_0 :: 0':s 325.86/291.54 hole_nil:cons2_0 :: nil:cons 325.86/291.54 gen_0':s3_0 :: Nat -> 0':s 325.86/291.54 gen_nil:cons4_0 :: Nat -> nil:cons 325.86/291.54 325.86/291.54 325.86/291.54 Generator Equations: 325.86/291.54 gen_0':s3_0(0) <=> 0' 325.86/291.54 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 325.86/291.54 gen_nil:cons4_0(0) <=> nil 325.86/291.54 gen_nil:cons4_0(+(x, 1)) <=> cons(0', gen_nil:cons4_0(x)) 325.86/291.54 325.86/291.54 325.86/291.54 The following defined symbols remain to be analysed: 325.86/291.54 +', *', sum, prod 325.86/291.54 325.86/291.54 They will be analysed ascendingly in the following order: 325.86/291.54 +' < *' 325.86/291.54 +' < sum 325.86/291.54 *' < prod 325.86/291.54 325.86/291.54 ---------------------------------------- 325.86/291.54 325.86/291.54 (10) LowerBoundPropagationProof (FINISHED) 325.86/291.54 Propagated lower bound. 325.86/291.54 ---------------------------------------- 325.86/291.54 325.86/291.54 (11) 325.86/291.54 BOUNDS(n^1, INF) 325.86/291.54 325.86/291.54 ---------------------------------------- 325.86/291.54 325.86/291.54 (12) 325.86/291.54 Obligation: 325.86/291.54 TRS: 325.86/291.54 Rules: 325.86/291.54 +'(x, 0') -> x 325.86/291.54 +'(0', x) -> x 325.86/291.54 +'(s(x), s(y)) -> s(s(+'(x, y))) 325.86/291.54 *'(x, 0') -> 0' 325.86/291.54 *'(0', x) -> 0' 325.86/291.54 *'(s(x), s(y)) -> s(+'(*'(x, y), +'(x, y))) 325.86/291.54 sum(nil) -> 0' 325.86/291.54 sum(cons(x, l)) -> +'(x, sum(l)) 325.86/291.54 prod(nil) -> s(0') 325.86/291.54 prod(cons(x, l)) -> *'(x, prod(l)) 325.86/291.54 325.86/291.54 Types: 325.86/291.54 +' :: 0':s -> 0':s -> 0':s 325.86/291.54 0' :: 0':s 325.86/291.54 s :: 0':s -> 0':s 325.86/291.54 *' :: 0':s -> 0':s -> 0':s 325.86/291.54 sum :: nil:cons -> 0':s 325.86/291.54 nil :: nil:cons 325.86/291.54 cons :: 0':s -> nil:cons -> nil:cons 325.86/291.54 prod :: nil:cons -> 0':s 325.86/291.54 hole_0':s1_0 :: 0':s 325.86/291.54 hole_nil:cons2_0 :: nil:cons 325.86/291.54 gen_0':s3_0 :: Nat -> 0':s 325.86/291.54 gen_nil:cons4_0 :: Nat -> nil:cons 325.86/291.54 325.86/291.54 325.86/291.54 Lemmas: 325.86/291.54 +'(gen_0':s3_0(n6_0), gen_0':s3_0(n6_0)) -> gen_0':s3_0(*(2, n6_0)), rt in Omega(1 + n6_0) 325.86/291.54 325.86/291.54 325.86/291.54 Generator Equations: 325.86/291.54 gen_0':s3_0(0) <=> 0' 325.86/291.54 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 325.86/291.54 gen_nil:cons4_0(0) <=> nil 325.86/291.54 gen_nil:cons4_0(+(x, 1)) <=> cons(0', gen_nil:cons4_0(x)) 325.86/291.54 325.86/291.54 325.86/291.54 The following defined symbols remain to be analysed: 325.86/291.54 *', sum, prod 325.86/291.54 325.86/291.54 They will be analysed ascendingly in the following order: 325.86/291.54 *' < prod 325.86/291.54 325.86/291.54 ---------------------------------------- 325.86/291.54 325.86/291.54 (13) RewriteLemmaProof (LOWER BOUND(ID)) 325.86/291.54 Proved the following rewrite lemma: 325.86/291.54 *'(gen_0':s3_0(n464_0), gen_0':s3_0(n464_0)) -> *5_0, rt in Omega(n464_0 + n464_0^2) 325.86/291.54 325.86/291.54 Induction Base: 325.86/291.54 *'(gen_0':s3_0(0), gen_0':s3_0(0)) 325.86/291.54 325.86/291.54 Induction Step: 325.86/291.54 *'(gen_0':s3_0(+(n464_0, 1)), gen_0':s3_0(+(n464_0, 1))) ->_R^Omega(1) 325.86/291.54 s(+'(*'(gen_0':s3_0(n464_0), gen_0':s3_0(n464_0)), +'(gen_0':s3_0(n464_0), gen_0':s3_0(n464_0)))) ->_IH 325.86/291.54 s(+'(*5_0, +'(gen_0':s3_0(n464_0), gen_0':s3_0(n464_0)))) ->_L^Omega(1 + n464_0) 325.86/291.54 s(+'(*5_0, gen_0':s3_0(*(2, n464_0)))) 325.86/291.54 325.86/291.54 We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). 325.86/291.54 ---------------------------------------- 325.86/291.54 325.86/291.54 (14) 325.86/291.54 Complex Obligation (BEST) 325.86/291.54 325.86/291.54 ---------------------------------------- 325.86/291.54 325.86/291.54 (15) 325.86/291.54 Obligation: 325.86/291.54 Proved the lower bound n^2 for the following obligation: 325.86/291.54 325.86/291.54 TRS: 325.86/291.54 Rules: 325.86/291.54 +'(x, 0') -> x 325.86/291.54 +'(0', x) -> x 325.86/291.54 +'(s(x), s(y)) -> s(s(+'(x, y))) 325.86/291.54 *'(x, 0') -> 0' 325.86/291.54 *'(0', x) -> 0' 325.86/291.54 *'(s(x), s(y)) -> s(+'(*'(x, y), +'(x, y))) 325.86/291.54 sum(nil) -> 0' 325.86/291.54 sum(cons(x, l)) -> +'(x, sum(l)) 325.86/291.54 prod(nil) -> s(0') 325.86/291.54 prod(cons(x, l)) -> *'(x, prod(l)) 325.86/291.54 325.86/291.54 Types: 325.86/291.54 +' :: 0':s -> 0':s -> 0':s 325.86/291.54 0' :: 0':s 325.86/291.54 s :: 0':s -> 0':s 325.86/291.54 *' :: 0':s -> 0':s -> 0':s 325.86/291.54 sum :: nil:cons -> 0':s 325.86/291.54 nil :: nil:cons 325.86/291.54 cons :: 0':s -> nil:cons -> nil:cons 325.86/291.54 prod :: nil:cons -> 0':s 325.86/291.54 hole_0':s1_0 :: 0':s 325.86/291.54 hole_nil:cons2_0 :: nil:cons 325.86/291.54 gen_0':s3_0 :: Nat -> 0':s 325.86/291.54 gen_nil:cons4_0 :: Nat -> nil:cons 325.86/291.54 325.86/291.54 325.86/291.54 Lemmas: 325.86/291.54 +'(gen_0':s3_0(n6_0), gen_0':s3_0(n6_0)) -> gen_0':s3_0(*(2, n6_0)), rt in Omega(1 + n6_0) 325.86/291.54 325.86/291.54 325.86/291.54 Generator Equations: 325.86/291.54 gen_0':s3_0(0) <=> 0' 325.86/291.54 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 325.86/291.54 gen_nil:cons4_0(0) <=> nil 325.86/291.54 gen_nil:cons4_0(+(x, 1)) <=> cons(0', gen_nil:cons4_0(x)) 325.86/291.54 325.86/291.54 325.86/291.54 The following defined symbols remain to be analysed: 325.86/291.54 *', sum, prod 325.86/291.54 325.86/291.54 They will be analysed ascendingly in the following order: 325.86/291.54 *' < prod 325.86/291.54 325.86/291.54 ---------------------------------------- 325.86/291.54 325.86/291.54 (16) LowerBoundPropagationProof (FINISHED) 325.86/291.54 Propagated lower bound. 325.86/291.54 ---------------------------------------- 325.86/291.54 325.86/291.54 (17) 325.86/291.54 BOUNDS(n^2, INF) 325.86/291.54 325.86/291.54 ---------------------------------------- 325.86/291.54 325.86/291.54 (18) 325.86/291.54 Obligation: 325.86/291.54 TRS: 325.86/291.54 Rules: 325.86/291.54 +'(x, 0') -> x 325.86/291.54 +'(0', x) -> x 325.86/291.54 +'(s(x), s(y)) -> s(s(+'(x, y))) 325.86/291.54 *'(x, 0') -> 0' 325.86/291.54 *'(0', x) -> 0' 325.86/291.54 *'(s(x), s(y)) -> s(+'(*'(x, y), +'(x, y))) 325.86/291.54 sum(nil) -> 0' 325.86/291.54 sum(cons(x, l)) -> +'(x, sum(l)) 325.86/291.54 prod(nil) -> s(0') 325.86/291.54 prod(cons(x, l)) -> *'(x, prod(l)) 325.86/291.54 325.86/291.54 Types: 325.86/291.54 +' :: 0':s -> 0':s -> 0':s 325.86/291.54 0' :: 0':s 325.86/291.54 s :: 0':s -> 0':s 325.86/291.54 *' :: 0':s -> 0':s -> 0':s 325.86/291.54 sum :: nil:cons -> 0':s 325.86/291.54 nil :: nil:cons 325.86/291.54 cons :: 0':s -> nil:cons -> nil:cons 325.86/291.54 prod :: nil:cons -> 0':s 325.86/291.54 hole_0':s1_0 :: 0':s 325.86/291.54 hole_nil:cons2_0 :: nil:cons 325.86/291.54 gen_0':s3_0 :: Nat -> 0':s 325.86/291.54 gen_nil:cons4_0 :: Nat -> nil:cons 325.86/291.54 325.86/291.54 325.86/291.54 Lemmas: 325.86/291.54 +'(gen_0':s3_0(n6_0), gen_0':s3_0(n6_0)) -> gen_0':s3_0(*(2, n6_0)), rt in Omega(1 + n6_0) 325.86/291.54 *'(gen_0':s3_0(n464_0), gen_0':s3_0(n464_0)) -> *5_0, rt in Omega(n464_0 + n464_0^2) 325.86/291.54 325.86/291.54 325.86/291.54 Generator Equations: 325.86/291.54 gen_0':s3_0(0) <=> 0' 325.86/291.54 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 325.86/291.54 gen_nil:cons4_0(0) <=> nil 325.86/291.54 gen_nil:cons4_0(+(x, 1)) <=> cons(0', gen_nil:cons4_0(x)) 325.86/291.54 325.86/291.54 325.86/291.54 The following defined symbols remain to be analysed: 325.86/291.54 sum, prod 325.86/291.54 ---------------------------------------- 325.86/291.54 325.86/291.54 (19) RewriteLemmaProof (LOWER BOUND(ID)) 325.86/291.54 Proved the following rewrite lemma: 325.86/291.54 sum(gen_nil:cons4_0(n9896_0)) -> gen_0':s3_0(0), rt in Omega(1 + n9896_0) 325.86/291.54 325.86/291.54 Induction Base: 325.86/291.54 sum(gen_nil:cons4_0(0)) ->_R^Omega(1) 325.86/291.54 0' 325.86/291.54 325.86/291.54 Induction Step: 325.86/291.54 sum(gen_nil:cons4_0(+(n9896_0, 1))) ->_R^Omega(1) 325.86/291.54 +'(0', sum(gen_nil:cons4_0(n9896_0))) ->_IH 325.86/291.54 +'(0', gen_0':s3_0(0)) ->_L^Omega(1) 325.86/291.54 gen_0':s3_0(*(2, 0)) 325.86/291.54 325.86/291.54 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 325.86/291.54 ---------------------------------------- 325.86/291.54 325.86/291.54 (20) 325.86/291.54 Obligation: 325.86/291.54 TRS: 325.86/291.54 Rules: 325.86/291.54 +'(x, 0') -> x 325.86/291.54 +'(0', x) -> x 325.86/291.54 +'(s(x), s(y)) -> s(s(+'(x, y))) 325.86/291.54 *'(x, 0') -> 0' 325.86/291.54 *'(0', x) -> 0' 325.86/291.54 *'(s(x), s(y)) -> s(+'(*'(x, y), +'(x, y))) 325.86/291.54 sum(nil) -> 0' 325.86/291.54 sum(cons(x, l)) -> +'(x, sum(l)) 325.86/291.54 prod(nil) -> s(0') 325.86/291.54 prod(cons(x, l)) -> *'(x, prod(l)) 325.86/291.54 325.86/291.54 Types: 325.86/291.54 +' :: 0':s -> 0':s -> 0':s 325.86/291.54 0' :: 0':s 325.86/291.54 s :: 0':s -> 0':s 325.86/291.54 *' :: 0':s -> 0':s -> 0':s 325.86/291.54 sum :: nil:cons -> 0':s 325.86/291.54 nil :: nil:cons 325.86/291.54 cons :: 0':s -> nil:cons -> nil:cons 325.86/291.54 prod :: nil:cons -> 0':s 325.86/291.54 hole_0':s1_0 :: 0':s 325.86/291.54 hole_nil:cons2_0 :: nil:cons 325.86/291.54 gen_0':s3_0 :: Nat -> 0':s 325.86/291.54 gen_nil:cons4_0 :: Nat -> nil:cons 325.86/291.54 325.86/291.54 325.86/291.54 Lemmas: 325.86/291.54 +'(gen_0':s3_0(n6_0), gen_0':s3_0(n6_0)) -> gen_0':s3_0(*(2, n6_0)), rt in Omega(1 + n6_0) 325.86/291.54 *'(gen_0':s3_0(n464_0), gen_0':s3_0(n464_0)) -> *5_0, rt in Omega(n464_0 + n464_0^2) 325.86/291.54 sum(gen_nil:cons4_0(n9896_0)) -> gen_0':s3_0(0), rt in Omega(1 + n9896_0) 325.86/291.54 325.86/291.54 325.86/291.54 Generator Equations: 325.86/291.54 gen_0':s3_0(0) <=> 0' 325.86/291.54 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 325.86/291.54 gen_nil:cons4_0(0) <=> nil 325.86/291.54 gen_nil:cons4_0(+(x, 1)) <=> cons(0', gen_nil:cons4_0(x)) 325.86/291.54 325.86/291.54 325.86/291.54 The following defined symbols remain to be analysed: 325.86/291.54 prod 325.86/291.54 ---------------------------------------- 325.86/291.54 325.86/291.54 (21) RewriteLemmaProof (LOWER BOUND(ID)) 325.86/291.54 Proved the following rewrite lemma: 325.86/291.54 prod(gen_nil:cons4_0(n10329_0)) -> *5_0, rt in Omega(n10329_0) 325.86/291.54 325.86/291.54 Induction Base: 325.86/291.54 prod(gen_nil:cons4_0(0)) 325.86/291.54 325.86/291.54 Induction Step: 325.86/291.54 prod(gen_nil:cons4_0(+(n10329_0, 1))) ->_R^Omega(1) 325.86/291.54 *'(0', prod(gen_nil:cons4_0(n10329_0))) ->_IH 325.86/291.54 *'(0', *5_0) 325.86/291.54 325.86/291.54 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 325.86/291.54 ---------------------------------------- 325.86/291.54 325.86/291.54 (22) 325.86/291.54 BOUNDS(1, INF) 325.86/291.57 EOF