3.40/1.60 WORST_CASE(NON_POLY, ?) 3.40/1.62 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.40/1.62 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.40/1.62 3.40/1.62 3.40/1.62 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.40/1.62 3.40/1.62 (0) CpxTRS 3.40/1.62 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.40/1.62 (2) TRS for Loop Detection 3.40/1.62 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.40/1.62 (4) BEST 3.40/1.62 (5) proven lower bound 3.40/1.62 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.40/1.62 (7) BOUNDS(n^1, INF) 3.40/1.62 (8) TRS for Loop Detection 3.40/1.62 (9) DecreasingLoopProof [FINISHED, 19 ms] 3.40/1.62 (10) BOUNDS(EXP, INF) 3.40/1.62 3.40/1.62 3.40/1.62 ---------------------------------------- 3.40/1.62 3.40/1.62 (0) 3.40/1.62 Obligation: 3.40/1.62 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.40/1.62 3.40/1.62 3.40/1.62 The TRS R consists of the following rules: 3.40/1.62 3.40/1.62 0(#) -> # 3.40/1.62 +(x, #) -> x 3.40/1.62 +(#, x) -> x 3.40/1.62 +(0(x), 0(y)) -> 0(+(x, y)) 3.40/1.62 +(0(x), 1(y)) -> 1(+(x, y)) 3.40/1.62 +(1(x), 0(y)) -> 1(+(x, y)) 3.40/1.62 +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) 3.40/1.62 *(#, x) -> # 3.40/1.62 *(0(x), y) -> 0(*(x, y)) 3.40/1.62 *(1(x), y) -> +(0(*(x, y)), y) 3.40/1.62 sum(nil) -> 0(#) 3.40/1.62 sum(cons(x, l)) -> +(x, sum(l)) 3.40/1.62 prod(nil) -> 1(#) 3.40/1.62 prod(cons(x, l)) -> *(x, prod(l)) 3.40/1.62 3.40/1.62 S is empty. 3.40/1.62 Rewrite Strategy: FULL 3.40/1.62 ---------------------------------------- 3.40/1.62 3.40/1.62 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.40/1.62 Transformed a relative TRS into a decreasing-loop problem. 3.40/1.62 ---------------------------------------- 3.40/1.62 3.40/1.62 (2) 3.40/1.62 Obligation: 3.40/1.62 Analyzing the following TRS for decreasing loops: 3.40/1.62 3.40/1.62 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.40/1.62 3.40/1.62 3.40/1.62 The TRS R consists of the following rules: 3.40/1.62 3.40/1.62 0(#) -> # 3.40/1.62 +(x, #) -> x 3.40/1.62 +(#, x) -> x 3.40/1.62 +(0(x), 0(y)) -> 0(+(x, y)) 3.40/1.62 +(0(x), 1(y)) -> 1(+(x, y)) 3.40/1.62 +(1(x), 0(y)) -> 1(+(x, y)) 3.40/1.62 +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) 3.40/1.62 *(#, x) -> # 3.40/1.62 *(0(x), y) -> 0(*(x, y)) 3.40/1.62 *(1(x), y) -> +(0(*(x, y)), y) 3.40/1.62 sum(nil) -> 0(#) 3.40/1.62 sum(cons(x, l)) -> +(x, sum(l)) 3.40/1.62 prod(nil) -> 1(#) 3.40/1.62 prod(cons(x, l)) -> *(x, prod(l)) 3.40/1.62 3.40/1.62 S is empty. 3.40/1.62 Rewrite Strategy: FULL 3.40/1.62 ---------------------------------------- 3.40/1.62 3.40/1.62 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.40/1.62 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.40/1.62 3.40/1.62 The rewrite sequence 3.40/1.62 3.40/1.62 +(1(x), 1(y)) ->^+ 0(+(+(x, y), 1(#))) 3.40/1.62 3.40/1.62 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. 3.40/1.62 3.40/1.62 The pumping substitution is [x / 1(x), y / 1(y)]. 3.40/1.62 3.40/1.62 The result substitution is [ ]. 3.40/1.62 3.40/1.62 3.40/1.62 3.40/1.62 3.40/1.62 ---------------------------------------- 3.40/1.62 3.40/1.62 (4) 3.40/1.62 Complex Obligation (BEST) 3.40/1.62 3.40/1.62 ---------------------------------------- 3.40/1.62 3.40/1.62 (5) 3.40/1.62 Obligation: 3.40/1.62 Proved the lower bound n^1 for the following obligation: 3.40/1.62 3.40/1.62 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.40/1.62 3.40/1.62 3.40/1.62 The TRS R consists of the following rules: 3.40/1.62 3.40/1.62 0(#) -> # 3.40/1.62 +(x, #) -> x 3.40/1.62 +(#, x) -> x 3.40/1.62 +(0(x), 0(y)) -> 0(+(x, y)) 3.40/1.62 +(0(x), 1(y)) -> 1(+(x, y)) 3.40/1.62 +(1(x), 0(y)) -> 1(+(x, y)) 3.40/1.62 +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) 3.40/1.62 *(#, x) -> # 3.40/1.62 *(0(x), y) -> 0(*(x, y)) 3.40/1.62 *(1(x), y) -> +(0(*(x, y)), y) 3.40/1.62 sum(nil) -> 0(#) 3.40/1.62 sum(cons(x, l)) -> +(x, sum(l)) 3.40/1.62 prod(nil) -> 1(#) 3.40/1.62 prod(cons(x, l)) -> *(x, prod(l)) 3.40/1.62 3.40/1.62 S is empty. 3.40/1.62 Rewrite Strategy: FULL 3.40/1.62 ---------------------------------------- 3.40/1.62 3.40/1.62 (6) LowerBoundPropagationProof (FINISHED) 3.40/1.62 Propagated lower bound. 3.40/1.62 ---------------------------------------- 3.40/1.62 3.40/1.62 (7) 3.40/1.62 BOUNDS(n^1, INF) 3.40/1.62 3.40/1.62 ---------------------------------------- 3.40/1.62 3.40/1.62 (8) 3.40/1.62 Obligation: 3.40/1.62 Analyzing the following TRS for decreasing loops: 3.40/1.62 3.40/1.62 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.40/1.62 3.40/1.62 3.40/1.62 The TRS R consists of the following rules: 3.40/1.62 3.40/1.62 0(#) -> # 3.40/1.62 +(x, #) -> x 3.40/1.62 +(#, x) -> x 3.40/1.62 +(0(x), 0(y)) -> 0(+(x, y)) 3.40/1.62 +(0(x), 1(y)) -> 1(+(x, y)) 3.40/1.62 +(1(x), 0(y)) -> 1(+(x, y)) 3.40/1.62 +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) 3.40/1.62 *(#, x) -> # 3.40/1.62 *(0(x), y) -> 0(*(x, y)) 3.40/1.62 *(1(x), y) -> +(0(*(x, y)), y) 3.40/1.62 sum(nil) -> 0(#) 3.40/1.62 sum(cons(x, l)) -> +(x, sum(l)) 3.40/1.62 prod(nil) -> 1(#) 3.40/1.62 prod(cons(x, l)) -> *(x, prod(l)) 3.40/1.62 3.40/1.62 S is empty. 3.40/1.62 Rewrite Strategy: FULL 3.40/1.62 ---------------------------------------- 3.40/1.62 3.40/1.62 (9) DecreasingLoopProof (FINISHED) 3.40/1.62 The following loop(s) give(s) rise to the lower bound EXP: 3.40/1.63 3.40/1.63 The rewrite sequence 3.40/1.63 3.40/1.63 prod(cons(1(x1_0), l)) ->^+ +(0(*(x1_0, prod(l))), prod(l)) 3.40/1.63 3.40/1.63 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0,1]. 3.40/1.63 3.40/1.63 The pumping substitution is [l / cons(1(x1_0), l)]. 3.40/1.63 3.40/1.63 The result substitution is [ ]. 3.40/1.63 3.40/1.63 3.40/1.63 3.40/1.63 The rewrite sequence 3.40/1.63 3.40/1.63 prod(cons(1(x1_0), l)) ->^+ +(0(*(x1_0, prod(l))), prod(l)) 3.40/1.63 3.40/1.63 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 3.40/1.63 3.40/1.63 The pumping substitution is [l / cons(1(x1_0), l)]. 3.40/1.63 3.40/1.63 The result substitution is [ ]. 3.40/1.63 3.40/1.63 3.40/1.63 3.40/1.63 3.40/1.63 ---------------------------------------- 3.40/1.63 3.40/1.63 (10) 3.40/1.63 BOUNDS(EXP, INF) 3.65/1.67 EOF