3.83/1.73 WORST_CASE(NON_POLY, ?) 3.83/1.74 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 3.83/1.74 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.83/1.74 3.83/1.74 3.83/1.74 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.83/1.74 3.83/1.74 (0) CpxTRS 3.83/1.74 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.83/1.74 (2) TRS for Loop Detection 3.83/1.74 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.83/1.74 (4) BEST 3.83/1.74 (5) proven lower bound 3.83/1.74 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.83/1.74 (7) BOUNDS(n^1, INF) 3.83/1.74 (8) TRS for Loop Detection 3.83/1.74 (9) DecreasingLoopProof [FINISHED, 128 ms] 3.83/1.74 (10) BOUNDS(EXP, INF) 3.83/1.74 3.83/1.74 3.83/1.74 ---------------------------------------- 3.83/1.74 3.83/1.74 (0) 3.83/1.74 Obligation: 3.83/1.74 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.83/1.74 3.83/1.74 3.83/1.74 The TRS R consists of the following rules: 3.83/1.74 3.83/1.74 0(#) -> # 3.83/1.74 +(x, #) -> x 3.83/1.74 +(#, x) -> x 3.83/1.74 +(0(x), 0(y)) -> 0(+(x, y)) 3.83/1.74 +(0(x), 1(y)) -> 1(+(x, y)) 3.83/1.74 +(1(x), 0(y)) -> 1(+(x, y)) 3.83/1.74 +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) 3.83/1.74 +(+(x, y), z) -> +(x, +(y, z)) 3.83/1.74 -(#, x) -> # 3.83/1.74 -(x, #) -> x 3.83/1.74 -(0(x), 0(y)) -> 0(-(x, y)) 3.83/1.74 -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) 3.83/1.74 -(1(x), 0(y)) -> 1(-(x, y)) 3.83/1.74 -(1(x), 1(y)) -> 0(-(x, y)) 3.83/1.74 not(true) -> false 3.83/1.74 not(false) -> true 3.83/1.74 if(true, x, y) -> x 3.83/1.74 if(false, x, y) -> y 3.83/1.74 eq(#, #) -> true 3.83/1.74 eq(#, 1(y)) -> false 3.83/1.74 eq(1(x), #) -> false 3.83/1.74 eq(#, 0(y)) -> eq(#, y) 3.83/1.74 eq(0(x), #) -> eq(x, #) 3.83/1.74 eq(1(x), 1(y)) -> eq(x, y) 3.83/1.74 eq(0(x), 1(y)) -> false 3.83/1.74 eq(1(x), 0(y)) -> false 3.83/1.74 eq(0(x), 0(y)) -> eq(x, y) 3.83/1.74 ge(0(x), 0(y)) -> ge(x, y) 3.83/1.74 ge(0(x), 1(y)) -> not(ge(y, x)) 3.83/1.74 ge(1(x), 0(y)) -> ge(x, y) 3.83/1.74 ge(1(x), 1(y)) -> ge(x, y) 3.83/1.74 ge(x, #) -> true 3.83/1.74 ge(#, 0(x)) -> ge(#, x) 3.83/1.74 ge(#, 1(x)) -> false 3.83/1.74 log(x) -> -(log'(x), 1(#)) 3.83/1.74 log'(#) -> # 3.83/1.74 log'(1(x)) -> +(log'(x), 1(#)) 3.83/1.74 log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #) 3.83/1.74 *(#, x) -> # 3.83/1.74 *(0(x), y) -> 0(*(x, y)) 3.83/1.74 *(1(x), y) -> +(0(*(x, y)), y) 3.83/1.74 *(*(x, y), z) -> *(x, *(y, z)) 3.83/1.74 *(x, +(y, z)) -> +(*(x, y), *(x, z)) 3.83/1.74 app(nil, l) -> l 3.83/1.74 app(cons(x, l1), l2) -> cons(x, app(l1, l2)) 3.83/1.74 sum(nil) -> 0(#) 3.83/1.74 sum(cons(x, l)) -> +(x, sum(l)) 3.83/1.74 sum(app(l1, l2)) -> +(sum(l1), sum(l2)) 3.83/1.74 prod(nil) -> 1(#) 3.83/1.74 prod(cons(x, l)) -> *(x, prod(l)) 3.83/1.74 prod(app(l1, l2)) -> *(prod(l1), prod(l2)) 3.83/1.74 mem(x, nil) -> false 3.83/1.74 mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l)) 3.83/1.74 inter(x, nil) -> nil 3.83/1.74 inter(nil, x) -> nil 3.83/1.74 inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3)) 3.83/1.74 inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3)) 3.83/1.74 inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2) 3.83/1.74 inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1) 3.83/1.74 ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2)) 3.83/1.74 ifinter(false, x, l1, l2) -> inter(l1, l2) 3.83/1.74 3.83/1.74 S is empty. 3.83/1.74 Rewrite Strategy: FULL 3.83/1.74 ---------------------------------------- 3.83/1.74 3.83/1.74 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.83/1.74 Transformed a relative TRS into a decreasing-loop problem. 3.83/1.74 ---------------------------------------- 3.83/1.74 3.83/1.74 (2) 3.83/1.74 Obligation: 3.83/1.74 Analyzing the following TRS for decreasing loops: 3.83/1.74 3.83/1.74 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.83/1.74 3.83/1.74 3.83/1.74 The TRS R consists of the following rules: 3.83/1.74 3.83/1.74 0(#) -> # 3.83/1.74 +(x, #) -> x 3.83/1.74 +(#, x) -> x 3.83/1.74 +(0(x), 0(y)) -> 0(+(x, y)) 3.83/1.74 +(0(x), 1(y)) -> 1(+(x, y)) 3.83/1.74 +(1(x), 0(y)) -> 1(+(x, y)) 3.83/1.74 +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) 3.83/1.74 +(+(x, y), z) -> +(x, +(y, z)) 3.83/1.74 -(#, x) -> # 3.83/1.74 -(x, #) -> x 3.83/1.74 -(0(x), 0(y)) -> 0(-(x, y)) 3.83/1.74 -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) 3.83/1.74 -(1(x), 0(y)) -> 1(-(x, y)) 3.83/1.74 -(1(x), 1(y)) -> 0(-(x, y)) 3.83/1.74 not(true) -> false 3.83/1.74 not(false) -> true 3.83/1.74 if(true, x, y) -> x 3.83/1.74 if(false, x, y) -> y 3.83/1.74 eq(#, #) -> true 3.83/1.74 eq(#, 1(y)) -> false 3.83/1.74 eq(1(x), #) -> false 3.83/1.74 eq(#, 0(y)) -> eq(#, y) 3.83/1.74 eq(0(x), #) -> eq(x, #) 3.83/1.74 eq(1(x), 1(y)) -> eq(x, y) 3.83/1.74 eq(0(x), 1(y)) -> false 3.83/1.74 eq(1(x), 0(y)) -> false 3.83/1.74 eq(0(x), 0(y)) -> eq(x, y) 3.83/1.74 ge(0(x), 0(y)) -> ge(x, y) 3.83/1.74 ge(0(x), 1(y)) -> not(ge(y, x)) 3.83/1.74 ge(1(x), 0(y)) -> ge(x, y) 3.83/1.74 ge(1(x), 1(y)) -> ge(x, y) 3.83/1.74 ge(x, #) -> true 3.83/1.74 ge(#, 0(x)) -> ge(#, x) 3.83/1.74 ge(#, 1(x)) -> false 3.83/1.74 log(x) -> -(log'(x), 1(#)) 3.83/1.74 log'(#) -> # 3.83/1.74 log'(1(x)) -> +(log'(x), 1(#)) 3.83/1.74 log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #) 3.83/1.74 *(#, x) -> # 3.83/1.74 *(0(x), y) -> 0(*(x, y)) 3.83/1.74 *(1(x), y) -> +(0(*(x, y)), y) 3.83/1.74 *(*(x, y), z) -> *(x, *(y, z)) 3.83/1.74 *(x, +(y, z)) -> +(*(x, y), *(x, z)) 3.83/1.74 app(nil, l) -> l 3.83/1.74 app(cons(x, l1), l2) -> cons(x, app(l1, l2)) 3.83/1.74 sum(nil) -> 0(#) 3.83/1.74 sum(cons(x, l)) -> +(x, sum(l)) 3.83/1.74 sum(app(l1, l2)) -> +(sum(l1), sum(l2)) 3.83/1.74 prod(nil) -> 1(#) 3.83/1.74 prod(cons(x, l)) -> *(x, prod(l)) 3.83/1.74 prod(app(l1, l2)) -> *(prod(l1), prod(l2)) 3.83/1.74 mem(x, nil) -> false 3.83/1.74 mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l)) 3.83/1.74 inter(x, nil) -> nil 3.83/1.74 inter(nil, x) -> nil 3.83/1.74 inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3)) 3.83/1.74 inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3)) 3.83/1.74 inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2) 3.83/1.74 inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1) 3.83/1.74 ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2)) 3.83/1.74 ifinter(false, x, l1, l2) -> inter(l1, l2) 3.83/1.74 3.83/1.74 S is empty. 3.83/1.74 Rewrite Strategy: FULL 3.83/1.74 ---------------------------------------- 3.83/1.74 3.83/1.74 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.83/1.74 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.83/1.74 3.83/1.74 The rewrite sequence 3.83/1.74 3.83/1.74 +(1(x), 1(y)) ->^+ 0(+(+(x, y), 1(#))) 3.83/1.74 3.83/1.74 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. 3.83/1.74 3.83/1.74 The pumping substitution is [x / 1(x), y / 1(y)]. 3.83/1.74 3.83/1.74 The result substitution is [ ]. 3.83/1.74 3.83/1.74 3.83/1.74 3.83/1.74 3.83/1.74 ---------------------------------------- 3.83/1.74 3.83/1.74 (4) 3.83/1.74 Complex Obligation (BEST) 3.83/1.74 3.83/1.74 ---------------------------------------- 3.83/1.74 3.83/1.74 (5) 3.83/1.74 Obligation: 3.83/1.74 Proved the lower bound n^1 for the following obligation: 3.83/1.74 3.83/1.74 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.83/1.74 3.83/1.74 3.83/1.74 The TRS R consists of the following rules: 3.83/1.74 3.83/1.74 0(#) -> # 3.83/1.74 +(x, #) -> x 3.83/1.74 +(#, x) -> x 3.83/1.74 +(0(x), 0(y)) -> 0(+(x, y)) 3.83/1.74 +(0(x), 1(y)) -> 1(+(x, y)) 3.83/1.74 +(1(x), 0(y)) -> 1(+(x, y)) 3.83/1.74 +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) 3.83/1.74 +(+(x, y), z) -> +(x, +(y, z)) 3.83/1.74 -(#, x) -> # 3.83/1.74 -(x, #) -> x 3.83/1.74 -(0(x), 0(y)) -> 0(-(x, y)) 3.83/1.74 -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) 3.83/1.74 -(1(x), 0(y)) -> 1(-(x, y)) 3.83/1.74 -(1(x), 1(y)) -> 0(-(x, y)) 3.83/1.74 not(true) -> false 3.83/1.74 not(false) -> true 3.83/1.74 if(true, x, y) -> x 3.83/1.74 if(false, x, y) -> y 3.83/1.74 eq(#, #) -> true 3.83/1.74 eq(#, 1(y)) -> false 3.83/1.74 eq(1(x), #) -> false 3.83/1.74 eq(#, 0(y)) -> eq(#, y) 3.83/1.74 eq(0(x), #) -> eq(x, #) 3.83/1.74 eq(1(x), 1(y)) -> eq(x, y) 3.83/1.74 eq(0(x), 1(y)) -> false 3.83/1.74 eq(1(x), 0(y)) -> false 3.83/1.74 eq(0(x), 0(y)) -> eq(x, y) 3.83/1.74 ge(0(x), 0(y)) -> ge(x, y) 3.83/1.74 ge(0(x), 1(y)) -> not(ge(y, x)) 3.83/1.74 ge(1(x), 0(y)) -> ge(x, y) 3.83/1.74 ge(1(x), 1(y)) -> ge(x, y) 3.83/1.74 ge(x, #) -> true 3.83/1.74 ge(#, 0(x)) -> ge(#, x) 3.83/1.74 ge(#, 1(x)) -> false 3.83/1.74 log(x) -> -(log'(x), 1(#)) 3.83/1.74 log'(#) -> # 3.83/1.74 log'(1(x)) -> +(log'(x), 1(#)) 3.83/1.74 log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #) 3.83/1.74 *(#, x) -> # 3.83/1.74 *(0(x), y) -> 0(*(x, y)) 3.83/1.74 *(1(x), y) -> +(0(*(x, y)), y) 3.83/1.74 *(*(x, y), z) -> *(x, *(y, z)) 3.83/1.74 *(x, +(y, z)) -> +(*(x, y), *(x, z)) 3.83/1.74 app(nil, l) -> l 3.83/1.74 app(cons(x, l1), l2) -> cons(x, app(l1, l2)) 3.83/1.74 sum(nil) -> 0(#) 3.83/1.74 sum(cons(x, l)) -> +(x, sum(l)) 3.83/1.74 sum(app(l1, l2)) -> +(sum(l1), sum(l2)) 3.83/1.74 prod(nil) -> 1(#) 3.83/1.74 prod(cons(x, l)) -> *(x, prod(l)) 3.83/1.74 prod(app(l1, l2)) -> *(prod(l1), prod(l2)) 3.83/1.74 mem(x, nil) -> false 3.83/1.74 mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l)) 3.83/1.74 inter(x, nil) -> nil 3.83/1.74 inter(nil, x) -> nil 3.83/1.74 inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3)) 3.83/1.74 inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3)) 3.83/1.74 inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2) 3.83/1.74 inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1) 3.83/1.74 ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2)) 3.83/1.74 ifinter(false, x, l1, l2) -> inter(l1, l2) 3.83/1.74 3.83/1.74 S is empty. 3.83/1.74 Rewrite Strategy: FULL 3.83/1.74 ---------------------------------------- 3.83/1.74 3.83/1.74 (6) LowerBoundPropagationProof (FINISHED) 3.83/1.74 Propagated lower bound. 3.83/1.74 ---------------------------------------- 3.83/1.74 3.83/1.74 (7) 3.83/1.74 BOUNDS(n^1, INF) 3.83/1.74 3.83/1.74 ---------------------------------------- 3.83/1.74 3.83/1.74 (8) 3.83/1.74 Obligation: 3.83/1.74 Analyzing the following TRS for decreasing loops: 3.83/1.74 3.83/1.74 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.83/1.74 3.83/1.74 3.83/1.74 The TRS R consists of the following rules: 3.83/1.74 3.83/1.74 0(#) -> # 3.83/1.74 +(x, #) -> x 3.83/1.74 +(#, x) -> x 3.83/1.74 +(0(x), 0(y)) -> 0(+(x, y)) 3.83/1.74 +(0(x), 1(y)) -> 1(+(x, y)) 3.83/1.74 +(1(x), 0(y)) -> 1(+(x, y)) 3.83/1.74 +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) 3.83/1.74 +(+(x, y), z) -> +(x, +(y, z)) 3.83/1.74 -(#, x) -> # 3.83/1.74 -(x, #) -> x 3.83/1.74 -(0(x), 0(y)) -> 0(-(x, y)) 3.83/1.74 -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) 3.83/1.74 -(1(x), 0(y)) -> 1(-(x, y)) 3.83/1.74 -(1(x), 1(y)) -> 0(-(x, y)) 3.83/1.74 not(true) -> false 3.83/1.74 not(false) -> true 3.83/1.74 if(true, x, y) -> x 3.83/1.74 if(false, x, y) -> y 3.83/1.74 eq(#, #) -> true 3.83/1.74 eq(#, 1(y)) -> false 3.83/1.74 eq(1(x), #) -> false 3.83/1.74 eq(#, 0(y)) -> eq(#, y) 3.83/1.74 eq(0(x), #) -> eq(x, #) 3.83/1.74 eq(1(x), 1(y)) -> eq(x, y) 3.83/1.74 eq(0(x), 1(y)) -> false 3.83/1.74 eq(1(x), 0(y)) -> false 3.83/1.74 eq(0(x), 0(y)) -> eq(x, y) 3.83/1.74 ge(0(x), 0(y)) -> ge(x, y) 3.83/1.74 ge(0(x), 1(y)) -> not(ge(y, x)) 3.83/1.74 ge(1(x), 0(y)) -> ge(x, y) 3.83/1.74 ge(1(x), 1(y)) -> ge(x, y) 3.83/1.74 ge(x, #) -> true 3.83/1.74 ge(#, 0(x)) -> ge(#, x) 3.83/1.74 ge(#, 1(x)) -> false 3.83/1.74 log(x) -> -(log'(x), 1(#)) 3.83/1.74 log'(#) -> # 3.83/1.74 log'(1(x)) -> +(log'(x), 1(#)) 3.83/1.74 log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #) 3.83/1.74 *(#, x) -> # 3.83/1.74 *(0(x), y) -> 0(*(x, y)) 3.83/1.74 *(1(x), y) -> +(0(*(x, y)), y) 3.83/1.74 *(*(x, y), z) -> *(x, *(y, z)) 3.83/1.74 *(x, +(y, z)) -> +(*(x, y), *(x, z)) 3.83/1.74 app(nil, l) -> l 3.83/1.74 app(cons(x, l1), l2) -> cons(x, app(l1, l2)) 3.83/1.74 sum(nil) -> 0(#) 3.83/1.74 sum(cons(x, l)) -> +(x, sum(l)) 3.83/1.74 sum(app(l1, l2)) -> +(sum(l1), sum(l2)) 3.83/1.74 prod(nil) -> 1(#) 3.83/1.74 prod(cons(x, l)) -> *(x, prod(l)) 3.83/1.74 prod(app(l1, l2)) -> *(prod(l1), prod(l2)) 3.83/1.74 mem(x, nil) -> false 3.83/1.74 mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l)) 3.83/1.74 inter(x, nil) -> nil 3.83/1.74 inter(nil, x) -> nil 3.83/1.74 inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3)) 3.83/1.74 inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3)) 3.83/1.74 inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2) 3.83/1.74 inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1) 3.83/1.74 ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2)) 3.83/1.74 ifinter(false, x, l1, l2) -> inter(l1, l2) 3.83/1.74 3.83/1.74 S is empty. 3.83/1.74 Rewrite Strategy: FULL 3.83/1.74 ---------------------------------------- 3.83/1.74 3.83/1.74 (9) DecreasingLoopProof (FINISHED) 3.83/1.74 The following loop(s) give(s) rise to the lower bound EXP: 3.83/1.74 3.83/1.74 The rewrite sequence 3.83/1.74 3.83/1.74 prod(cons(1(x1_0), l)) ->^+ +(0(*(x1_0, prod(l))), prod(l)) 3.83/1.74 3.83/1.74 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0,1]. 3.83/1.74 3.83/1.74 The pumping substitution is [l / cons(1(x1_0), l)]. 3.83/1.74 3.83/1.74 The result substitution is [ ]. 3.83/1.74 3.83/1.74 3.83/1.74 3.83/1.74 The rewrite sequence 3.83/1.74 3.83/1.74 prod(cons(1(x1_0), l)) ->^+ +(0(*(x1_0, prod(l))), prod(l)) 3.83/1.74 3.83/1.74 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 3.83/1.74 3.83/1.74 The pumping substitution is [l / cons(1(x1_0), l)]. 3.83/1.74 3.83/1.74 The result substitution is [ ]. 3.83/1.74 3.83/1.74 3.83/1.74 3.83/1.74 3.83/1.74 ---------------------------------------- 3.83/1.74 3.83/1.74 (10) 3.83/1.74 BOUNDS(EXP, INF) 4.09/2.43 EOF