301.41/291.50 WORST_CASE(Omega(n^1), ?) 301.54/291.55 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 301.54/291.55 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 301.54/291.55 301.54/291.55 301.54/291.55 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 301.54/291.55 301.54/291.55 (0) CpxTRS 301.54/291.55 (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 301.54/291.55 (2) CpxTRS 301.54/291.55 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 301.54/291.55 (4) typed CpxTrs 301.54/291.55 (5) OrderProof [LOWER BOUND(ID), 0 ms] 301.54/291.55 (6) typed CpxTrs 301.54/291.55 (7) RewriteLemmaProof [LOWER BOUND(ID), 234 ms] 301.54/291.55 (8) BEST 301.54/291.55 (9) proven lower bound 301.54/291.55 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 301.54/291.55 (11) BOUNDS(n^1, INF) 301.54/291.55 (12) typed CpxTrs 301.54/291.55 (13) RewriteLemmaProof [LOWER BOUND(ID), 85 ms] 301.54/291.55 (14) typed CpxTrs 301.54/291.55 301.54/291.55 301.54/291.55 ---------------------------------------- 301.54/291.55 301.54/291.55 (0) 301.54/291.55 Obligation: 301.54/291.55 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 301.54/291.55 301.54/291.55 301.54/291.55 The TRS R consists of the following rules: 301.54/291.55 301.54/291.55 cond1(true, x, y) -> cond2(gr(x, y), x, y) 301.54/291.55 cond2(true, x, y) -> cond1(neq(x, 0), y, y) 301.54/291.55 cond2(false, x, y) -> cond1(neq(x, 0), p(x), y) 301.54/291.55 gr(0, x) -> false 301.54/291.55 gr(s(x), 0) -> true 301.54/291.55 gr(s(x), s(y)) -> gr(x, y) 301.54/291.55 neq(0, 0) -> false 301.54/291.55 neq(0, s(x)) -> true 301.54/291.55 neq(s(x), 0) -> true 301.54/291.55 neq(s(x), s(y)) -> neq(x, y) 301.54/291.55 p(0) -> 0 301.54/291.55 p(s(x)) -> x 301.54/291.55 301.54/291.55 S is empty. 301.54/291.55 Rewrite Strategy: FULL 301.54/291.55 ---------------------------------------- 301.54/291.55 301.54/291.55 (1) RenamingProof (BOTH BOUNDS(ID, ID)) 301.54/291.55 Renamed function symbols to avoid clashes with predefined symbol. 301.54/291.55 ---------------------------------------- 301.54/291.55 301.54/291.55 (2) 301.54/291.55 Obligation: 301.54/291.55 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 301.54/291.55 301.54/291.55 301.54/291.55 The TRS R consists of the following rules: 301.54/291.55 301.54/291.55 cond1(true, x, y) -> cond2(gr(x, y), x, y) 301.54/291.55 cond2(true, x, y) -> cond1(neq(x, 0'), y, y) 301.54/291.55 cond2(false, x, y) -> cond1(neq(x, 0'), p(x), y) 301.54/291.55 gr(0', x) -> false 301.54/291.55 gr(s(x), 0') -> true 301.54/291.55 gr(s(x), s(y)) -> gr(x, y) 301.54/291.55 neq(0', 0') -> false 301.54/291.55 neq(0', s(x)) -> true 301.54/291.55 neq(s(x), 0') -> true 301.54/291.55 neq(s(x), s(y)) -> neq(x, y) 301.54/291.55 p(0') -> 0' 301.54/291.55 p(s(x)) -> x 301.54/291.55 301.54/291.55 S is empty. 301.54/291.55 Rewrite Strategy: FULL 301.54/291.55 ---------------------------------------- 301.54/291.55 301.54/291.55 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 301.54/291.55 Infered types. 301.54/291.55 ---------------------------------------- 301.54/291.55 301.54/291.55 (4) 301.54/291.55 Obligation: 301.54/291.55 TRS: 301.54/291.55 Rules: 301.54/291.55 cond1(true, x, y) -> cond2(gr(x, y), x, y) 301.54/291.55 cond2(true, x, y) -> cond1(neq(x, 0'), y, y) 301.54/291.55 cond2(false, x, y) -> cond1(neq(x, 0'), p(x), y) 301.54/291.55 gr(0', x) -> false 301.54/291.55 gr(s(x), 0') -> true 301.54/291.55 gr(s(x), s(y)) -> gr(x, y) 301.54/291.55 neq(0', 0') -> false 301.54/291.55 neq(0', s(x)) -> true 301.54/291.55 neq(s(x), 0') -> true 301.54/291.55 neq(s(x), s(y)) -> neq(x, y) 301.54/291.55 p(0') -> 0' 301.54/291.55 p(s(x)) -> x 301.54/291.55 301.54/291.55 Types: 301.54/291.55 cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2 301.54/291.55 true :: true:false 301.54/291.55 cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2 301.54/291.55 gr :: 0':s -> 0':s -> true:false 301.54/291.55 neq :: 0':s -> 0':s -> true:false 301.54/291.55 0' :: 0':s 301.54/291.55 false :: true:false 301.54/291.55 p :: 0':s -> 0':s 301.54/291.55 s :: 0':s -> 0':s 301.54/291.55 hole_cond1:cond21_0 :: cond1:cond2 301.54/291.55 hole_true:false2_0 :: true:false 301.54/291.55 hole_0':s3_0 :: 0':s 301.54/291.55 gen_0':s4_0 :: Nat -> 0':s 301.54/291.55 301.54/291.55 ---------------------------------------- 301.54/291.55 301.54/291.55 (5) OrderProof (LOWER BOUND(ID)) 301.54/291.55 Heuristically decided to analyse the following defined symbols: 301.54/291.55 cond1, cond2, gr, neq 301.54/291.55 301.54/291.55 They will be analysed ascendingly in the following order: 301.54/291.55 cond1 = cond2 301.54/291.55 gr < cond1 301.54/291.55 neq < cond2 301.54/291.55 301.54/291.55 ---------------------------------------- 301.54/291.55 301.54/291.55 (6) 301.54/291.55 Obligation: 301.54/291.55 TRS: 301.54/291.55 Rules: 301.54/291.55 cond1(true, x, y) -> cond2(gr(x, y), x, y) 301.54/291.55 cond2(true, x, y) -> cond1(neq(x, 0'), y, y) 301.54/291.55 cond2(false, x, y) -> cond1(neq(x, 0'), p(x), y) 301.54/291.55 gr(0', x) -> false 301.54/291.55 gr(s(x), 0') -> true 301.54/291.55 gr(s(x), s(y)) -> gr(x, y) 301.54/291.55 neq(0', 0') -> false 301.54/291.55 neq(0', s(x)) -> true 301.54/291.55 neq(s(x), 0') -> true 301.54/291.55 neq(s(x), s(y)) -> neq(x, y) 301.54/291.55 p(0') -> 0' 301.54/291.55 p(s(x)) -> x 301.54/291.55 301.54/291.55 Types: 301.54/291.55 cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2 301.54/291.55 true :: true:false 301.54/291.55 cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2 301.54/291.55 gr :: 0':s -> 0':s -> true:false 301.54/291.55 neq :: 0':s -> 0':s -> true:false 301.54/291.55 0' :: 0':s 301.54/291.55 false :: true:false 301.54/291.55 p :: 0':s -> 0':s 301.54/291.55 s :: 0':s -> 0':s 301.54/291.55 hole_cond1:cond21_0 :: cond1:cond2 301.54/291.55 hole_true:false2_0 :: true:false 301.54/291.55 hole_0':s3_0 :: 0':s 301.54/291.55 gen_0':s4_0 :: Nat -> 0':s 301.54/291.55 301.54/291.55 301.54/291.55 Generator Equations: 301.54/291.55 gen_0':s4_0(0) <=> 0' 301.54/291.55 gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) 301.54/291.55 301.54/291.55 301.54/291.55 The following defined symbols remain to be analysed: 301.54/291.55 gr, cond1, cond2, neq 301.54/291.55 301.54/291.55 They will be analysed ascendingly in the following order: 301.54/291.55 cond1 = cond2 301.54/291.55 gr < cond1 301.54/291.55 neq < cond2 301.54/291.55 301.54/291.55 ---------------------------------------- 301.54/291.55 301.54/291.55 (7) RewriteLemmaProof (LOWER BOUND(ID)) 301.54/291.55 Proved the following rewrite lemma: 301.54/291.55 gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) 301.54/291.55 301.54/291.55 Induction Base: 301.54/291.55 gr(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) 301.54/291.55 false 301.54/291.55 301.54/291.55 Induction Step: 301.54/291.55 gr(gen_0':s4_0(+(n6_0, 1)), gen_0':s4_0(+(n6_0, 1))) ->_R^Omega(1) 301.54/291.55 gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) ->_IH 301.54/291.55 false 301.54/291.55 301.54/291.55 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 301.54/291.55 ---------------------------------------- 301.54/291.55 301.54/291.55 (8) 301.54/291.55 Complex Obligation (BEST) 301.54/291.55 301.54/291.55 ---------------------------------------- 301.54/291.55 301.54/291.55 (9) 301.54/291.55 Obligation: 301.54/291.55 Proved the lower bound n^1 for the following obligation: 301.54/291.55 301.54/291.55 TRS: 301.54/291.55 Rules: 301.54/291.55 cond1(true, x, y) -> cond2(gr(x, y), x, y) 301.54/291.55 cond2(true, x, y) -> cond1(neq(x, 0'), y, y) 301.54/291.55 cond2(false, x, y) -> cond1(neq(x, 0'), p(x), y) 301.54/291.55 gr(0', x) -> false 301.54/291.55 gr(s(x), 0') -> true 301.54/291.55 gr(s(x), s(y)) -> gr(x, y) 301.54/291.55 neq(0', 0') -> false 301.54/291.55 neq(0', s(x)) -> true 301.54/291.55 neq(s(x), 0') -> true 301.54/291.55 neq(s(x), s(y)) -> neq(x, y) 301.54/291.55 p(0') -> 0' 301.54/291.55 p(s(x)) -> x 301.54/291.55 301.54/291.55 Types: 301.54/291.55 cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2 301.54/291.55 true :: true:false 301.54/291.55 cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2 301.54/291.55 gr :: 0':s -> 0':s -> true:false 301.54/291.55 neq :: 0':s -> 0':s -> true:false 301.54/291.55 0' :: 0':s 301.54/291.55 false :: true:false 301.54/291.55 p :: 0':s -> 0':s 301.54/291.55 s :: 0':s -> 0':s 301.54/291.55 hole_cond1:cond21_0 :: cond1:cond2 301.54/291.55 hole_true:false2_0 :: true:false 301.54/291.55 hole_0':s3_0 :: 0':s 301.54/291.55 gen_0':s4_0 :: Nat -> 0':s 301.54/291.55 301.54/291.55 301.54/291.55 Generator Equations: 301.54/291.55 gen_0':s4_0(0) <=> 0' 301.54/291.55 gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) 301.54/291.55 301.54/291.55 301.54/291.55 The following defined symbols remain to be analysed: 301.54/291.55 gr, cond1, cond2, neq 301.54/291.55 301.54/291.55 They will be analysed ascendingly in the following order: 301.54/291.55 cond1 = cond2 301.54/291.55 gr < cond1 301.54/291.55 neq < cond2 301.54/291.55 301.54/291.55 ---------------------------------------- 301.54/291.55 301.54/291.55 (10) LowerBoundPropagationProof (FINISHED) 301.54/291.55 Propagated lower bound. 301.54/291.55 ---------------------------------------- 301.54/291.55 301.54/291.55 (11) 301.54/291.55 BOUNDS(n^1, INF) 301.54/291.55 301.54/291.55 ---------------------------------------- 301.54/291.55 301.54/291.55 (12) 301.54/291.55 Obligation: 301.54/291.55 TRS: 301.54/291.55 Rules: 301.54/291.55 cond1(true, x, y) -> cond2(gr(x, y), x, y) 301.54/291.55 cond2(true, x, y) -> cond1(neq(x, 0'), y, y) 301.54/291.55 cond2(false, x, y) -> cond1(neq(x, 0'), p(x), y) 301.54/291.55 gr(0', x) -> false 301.54/291.55 gr(s(x), 0') -> true 301.54/291.55 gr(s(x), s(y)) -> gr(x, y) 301.54/291.55 neq(0', 0') -> false 301.54/291.55 neq(0', s(x)) -> true 301.54/291.55 neq(s(x), 0') -> true 301.54/291.55 neq(s(x), s(y)) -> neq(x, y) 301.54/291.55 p(0') -> 0' 301.54/291.55 p(s(x)) -> x 301.54/291.55 301.54/291.55 Types: 301.54/291.55 cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2 301.54/291.55 true :: true:false 301.54/291.55 cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2 301.54/291.55 gr :: 0':s -> 0':s -> true:false 301.54/291.55 neq :: 0':s -> 0':s -> true:false 301.54/291.55 0' :: 0':s 301.54/291.55 false :: true:false 301.54/291.55 p :: 0':s -> 0':s 301.54/291.55 s :: 0':s -> 0':s 301.54/291.55 hole_cond1:cond21_0 :: cond1:cond2 301.54/291.55 hole_true:false2_0 :: true:false 301.54/291.55 hole_0':s3_0 :: 0':s 301.54/291.55 gen_0':s4_0 :: Nat -> 0':s 301.54/291.55 301.54/291.55 301.54/291.55 Lemmas: 301.54/291.55 gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) 301.54/291.55 301.54/291.55 301.54/291.55 Generator Equations: 301.54/291.55 gen_0':s4_0(0) <=> 0' 301.54/291.55 gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) 301.54/291.55 301.54/291.55 301.54/291.55 The following defined symbols remain to be analysed: 301.54/291.55 neq, cond1, cond2 301.54/291.55 301.54/291.55 They will be analysed ascendingly in the following order: 301.54/291.55 cond1 = cond2 301.54/291.55 neq < cond2 301.54/291.55 301.54/291.55 ---------------------------------------- 301.54/291.55 301.54/291.55 (13) RewriteLemmaProof (LOWER BOUND(ID)) 301.54/291.55 Proved the following rewrite lemma: 301.54/291.55 neq(gen_0':s4_0(n265_0), gen_0':s4_0(n265_0)) -> false, rt in Omega(1 + n265_0) 301.54/291.55 301.54/291.55 Induction Base: 301.54/291.55 neq(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) 301.54/291.55 false 301.54/291.55 301.54/291.55 Induction Step: 301.54/291.55 neq(gen_0':s4_0(+(n265_0, 1)), gen_0':s4_0(+(n265_0, 1))) ->_R^Omega(1) 301.54/291.55 neq(gen_0':s4_0(n265_0), gen_0':s4_0(n265_0)) ->_IH 301.54/291.55 false 301.54/291.55 301.54/291.55 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 301.54/291.55 ---------------------------------------- 301.54/291.55 301.54/291.55 (14) 301.54/291.55 Obligation: 301.54/291.55 TRS: 301.54/291.55 Rules: 301.54/291.55 cond1(true, x, y) -> cond2(gr(x, y), x, y) 301.54/291.55 cond2(true, x, y) -> cond1(neq(x, 0'), y, y) 301.54/291.55 cond2(false, x, y) -> cond1(neq(x, 0'), p(x), y) 301.54/291.55 gr(0', x) -> false 301.54/291.55 gr(s(x), 0') -> true 301.54/291.55 gr(s(x), s(y)) -> gr(x, y) 301.54/291.55 neq(0', 0') -> false 301.54/291.55 neq(0', s(x)) -> true 301.54/291.55 neq(s(x), 0') -> true 301.54/291.55 neq(s(x), s(y)) -> neq(x, y) 301.54/291.55 p(0') -> 0' 301.54/291.55 p(s(x)) -> x 301.54/291.55 301.54/291.55 Types: 301.54/291.55 cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2 301.54/291.55 true :: true:false 301.54/291.55 cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2 301.54/291.55 gr :: 0':s -> 0':s -> true:false 301.54/291.55 neq :: 0':s -> 0':s -> true:false 301.54/291.55 0' :: 0':s 301.54/291.55 false :: true:false 301.54/291.55 p :: 0':s -> 0':s 301.54/291.55 s :: 0':s -> 0':s 301.54/291.55 hole_cond1:cond21_0 :: cond1:cond2 301.54/291.55 hole_true:false2_0 :: true:false 301.54/291.55 hole_0':s3_0 :: 0':s 301.54/291.55 gen_0':s4_0 :: Nat -> 0':s 301.54/291.55 301.54/291.55 301.54/291.55 Lemmas: 301.54/291.55 gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) 301.54/291.55 neq(gen_0':s4_0(n265_0), gen_0':s4_0(n265_0)) -> false, rt in Omega(1 + n265_0) 301.54/291.55 301.54/291.55 301.54/291.55 Generator Equations: 301.54/291.55 gen_0':s4_0(0) <=> 0' 301.54/291.55 gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) 301.54/291.55 301.54/291.55 301.54/291.55 The following defined symbols remain to be analysed: 301.54/291.55 cond2, cond1 301.54/291.55 301.54/291.55 They will be analysed ascendingly in the following order: 301.54/291.55 cond1 = cond2 301.54/291.58 EOF