303.83/291.50 WORST_CASE(Omega(n^1), ?) 303.83/291.51 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 303.83/291.51 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 303.83/291.51 303.83/291.51 303.83/291.51 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 303.83/291.51 303.83/291.51 (0) CpxTRS 303.83/291.51 (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 303.83/291.51 (2) CpxTRS 303.83/291.51 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 303.83/291.51 (4) typed CpxTrs 303.83/291.51 (5) OrderProof [LOWER BOUND(ID), 0 ms] 303.83/291.51 (6) typed CpxTrs 303.83/291.51 (7) RewriteLemmaProof [LOWER BOUND(ID), 276 ms] 303.83/291.51 (8) BEST 303.83/291.51 (9) proven lower bound 303.83/291.51 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 303.83/291.51 (11) BOUNDS(n^1, INF) 303.83/291.51 (12) typed CpxTrs 303.83/291.51 303.83/291.51 303.83/291.51 ---------------------------------------- 303.83/291.51 303.83/291.51 (0) 303.83/291.51 Obligation: 303.83/291.51 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 303.83/291.51 303.83/291.51 303.83/291.51 The TRS R consists of the following rules: 303.83/291.51 303.83/291.51 cond(true, x, y, z) -> cond(and(gr(x, z), gr(y, z)), p(x), p(y), z) 303.83/291.51 and(true, true) -> true 303.83/291.51 and(x, false) -> false 303.83/291.51 and(false, x) -> false 303.83/291.51 gr(0, 0) -> false 303.83/291.51 gr(0, x) -> false 303.83/291.51 gr(s(x), 0) -> true 303.83/291.51 gr(s(x), s(y)) -> gr(x, y) 303.83/291.51 p(0) -> 0 303.83/291.51 p(s(x)) -> x 303.83/291.51 303.83/291.51 S is empty. 303.83/291.51 Rewrite Strategy: FULL 303.83/291.51 ---------------------------------------- 303.83/291.51 303.83/291.51 (1) RenamingProof (BOTH BOUNDS(ID, ID)) 303.83/291.51 Renamed function symbols to avoid clashes with predefined symbol. 303.83/291.51 ---------------------------------------- 303.83/291.51 303.83/291.51 (2) 303.83/291.51 Obligation: 303.83/291.51 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 303.83/291.51 303.83/291.51 303.83/291.51 The TRS R consists of the following rules: 303.83/291.51 303.83/291.51 cond(true, x, y, z) -> cond(and(gr(x, z), gr(y, z)), p(x), p(y), z) 303.83/291.51 and(true, true) -> true 303.83/291.51 and(x, false) -> false 303.83/291.51 and(false, x) -> false 303.83/291.51 gr(0', 0') -> false 303.83/291.51 gr(0', x) -> false 303.83/291.51 gr(s(x), 0') -> true 303.83/291.51 gr(s(x), s(y)) -> gr(x, y) 303.83/291.51 p(0') -> 0' 303.83/291.51 p(s(x)) -> x 303.83/291.51 303.83/291.51 S is empty. 303.83/291.51 Rewrite Strategy: FULL 303.83/291.51 ---------------------------------------- 303.83/291.51 303.83/291.51 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 303.83/291.51 Infered types. 303.83/291.51 ---------------------------------------- 303.83/291.51 303.83/291.51 (4) 303.83/291.51 Obligation: 303.83/291.51 TRS: 303.83/291.51 Rules: 303.83/291.51 cond(true, x, y, z) -> cond(and(gr(x, z), gr(y, z)), p(x), p(y), z) 303.83/291.51 and(true, true) -> true 303.83/291.51 and(x, false) -> false 303.83/291.51 and(false, x) -> false 303.83/291.51 gr(0', 0') -> false 303.83/291.51 gr(0', x) -> false 303.83/291.51 gr(s(x), 0') -> true 303.83/291.51 gr(s(x), s(y)) -> gr(x, y) 303.83/291.51 p(0') -> 0' 303.83/291.51 p(s(x)) -> x 303.83/291.51 303.83/291.51 Types: 303.83/291.51 cond :: true:false -> 0':s -> 0':s -> 0':s -> cond 303.83/291.51 true :: true:false 303.83/291.51 and :: true:false -> true:false -> true:false 303.83/291.51 gr :: 0':s -> 0':s -> true:false 303.83/291.51 p :: 0':s -> 0':s 303.83/291.51 false :: true:false 303.83/291.51 0' :: 0':s 303.83/291.51 s :: 0':s -> 0':s 303.83/291.51 hole_cond1_0 :: cond 303.83/291.51 hole_true:false2_0 :: true:false 303.83/291.51 hole_0':s3_0 :: 0':s 303.83/291.51 gen_0':s4_0 :: Nat -> 0':s 303.83/291.51 303.83/291.51 ---------------------------------------- 303.83/291.51 303.83/291.51 (5) OrderProof (LOWER BOUND(ID)) 303.83/291.51 Heuristically decided to analyse the following defined symbols: 303.83/291.51 cond, gr 303.83/291.51 303.83/291.51 They will be analysed ascendingly in the following order: 303.83/291.51 gr < cond 303.83/291.51 303.83/291.51 ---------------------------------------- 303.83/291.51 303.83/291.51 (6) 303.83/291.51 Obligation: 303.83/291.51 TRS: 303.83/291.51 Rules: 303.83/291.51 cond(true, x, y, z) -> cond(and(gr(x, z), gr(y, z)), p(x), p(y), z) 303.83/291.51 and(true, true) -> true 303.83/291.51 and(x, false) -> false 303.83/291.51 and(false, x) -> false 303.83/291.51 gr(0', 0') -> false 303.83/291.51 gr(0', x) -> false 303.83/291.51 gr(s(x), 0') -> true 303.83/291.51 gr(s(x), s(y)) -> gr(x, y) 303.83/291.51 p(0') -> 0' 303.83/291.51 p(s(x)) -> x 303.83/291.51 303.83/291.51 Types: 303.83/291.51 cond :: true:false -> 0':s -> 0':s -> 0':s -> cond 303.83/291.51 true :: true:false 303.83/291.51 and :: true:false -> true:false -> true:false 303.83/291.51 gr :: 0':s -> 0':s -> true:false 303.83/291.51 p :: 0':s -> 0':s 303.83/291.51 false :: true:false 303.83/291.51 0' :: 0':s 303.83/291.51 s :: 0':s -> 0':s 303.83/291.51 hole_cond1_0 :: cond 303.83/291.51 hole_true:false2_0 :: true:false 303.83/291.51 hole_0':s3_0 :: 0':s 303.83/291.51 gen_0':s4_0 :: Nat -> 0':s 303.83/291.51 303.83/291.51 303.83/291.51 Generator Equations: 303.83/291.51 gen_0':s4_0(0) <=> 0' 303.83/291.51 gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) 303.83/291.51 303.83/291.51 303.83/291.51 The following defined symbols remain to be analysed: 303.83/291.51 gr, cond 303.83/291.51 303.83/291.51 They will be analysed ascendingly in the following order: 303.83/291.51 gr < cond 303.83/291.51 303.83/291.51 ---------------------------------------- 303.83/291.51 303.83/291.51 (7) RewriteLemmaProof (LOWER BOUND(ID)) 303.83/291.51 Proved the following rewrite lemma: 303.83/291.51 gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) 303.83/291.51 303.83/291.51 Induction Base: 303.83/291.51 gr(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) 303.83/291.51 false 303.83/291.51 303.83/291.51 Induction Step: 303.83/291.51 gr(gen_0':s4_0(+(n6_0, 1)), gen_0':s4_0(+(n6_0, 1))) ->_R^Omega(1) 303.83/291.51 gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) ->_IH 303.83/291.51 false 303.83/291.51 303.83/291.51 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 303.83/291.51 ---------------------------------------- 303.83/291.51 303.83/291.51 (8) 303.83/291.51 Complex Obligation (BEST) 303.83/291.51 303.83/291.51 ---------------------------------------- 303.83/291.51 303.83/291.51 (9) 303.83/291.51 Obligation: 303.83/291.51 Proved the lower bound n^1 for the following obligation: 303.83/291.51 303.83/291.51 TRS: 303.83/291.51 Rules: 303.83/291.51 cond(true, x, y, z) -> cond(and(gr(x, z), gr(y, z)), p(x), p(y), z) 303.83/291.51 and(true, true) -> true 303.83/291.51 and(x, false) -> false 303.83/291.51 and(false, x) -> false 303.83/291.51 gr(0', 0') -> false 303.83/291.51 gr(0', x) -> false 303.83/291.51 gr(s(x), 0') -> true 303.83/291.51 gr(s(x), s(y)) -> gr(x, y) 303.83/291.51 p(0') -> 0' 303.83/291.51 p(s(x)) -> x 303.83/291.51 303.83/291.51 Types: 303.83/291.51 cond :: true:false -> 0':s -> 0':s -> 0':s -> cond 303.83/291.51 true :: true:false 303.83/291.51 and :: true:false -> true:false -> true:false 303.83/291.51 gr :: 0':s -> 0':s -> true:false 303.83/291.51 p :: 0':s -> 0':s 303.83/291.51 false :: true:false 303.83/291.51 0' :: 0':s 303.83/291.51 s :: 0':s -> 0':s 303.83/291.51 hole_cond1_0 :: cond 303.83/291.51 hole_true:false2_0 :: true:false 303.83/291.51 hole_0':s3_0 :: 0':s 303.83/291.51 gen_0':s4_0 :: Nat -> 0':s 303.83/291.51 303.83/291.51 303.83/291.51 Generator Equations: 303.83/291.51 gen_0':s4_0(0) <=> 0' 303.83/291.51 gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) 303.83/291.51 303.83/291.51 303.83/291.51 The following defined symbols remain to be analysed: 303.83/291.51 gr, cond 303.83/291.51 303.83/291.51 They will be analysed ascendingly in the following order: 303.83/291.51 gr < cond 303.83/291.51 303.83/291.51 ---------------------------------------- 303.83/291.51 303.83/291.51 (10) LowerBoundPropagationProof (FINISHED) 303.83/291.51 Propagated lower bound. 303.83/291.51 ---------------------------------------- 303.83/291.51 303.83/291.51 (11) 303.83/291.51 BOUNDS(n^1, INF) 303.83/291.51 303.83/291.51 ---------------------------------------- 303.83/291.51 303.83/291.51 (12) 303.83/291.51 Obligation: 303.83/291.51 TRS: 303.83/291.51 Rules: 303.83/291.51 cond(true, x, y, z) -> cond(and(gr(x, z), gr(y, z)), p(x), p(y), z) 303.83/291.51 and(true, true) -> true 303.83/291.51 and(x, false) -> false 303.83/291.51 and(false, x) -> false 303.83/291.51 gr(0', 0') -> false 303.83/291.51 gr(0', x) -> false 303.83/291.51 gr(s(x), 0') -> true 303.83/291.51 gr(s(x), s(y)) -> gr(x, y) 303.83/291.51 p(0') -> 0' 303.83/291.51 p(s(x)) -> x 303.83/291.51 303.83/291.51 Types: 303.83/291.51 cond :: true:false -> 0':s -> 0':s -> 0':s -> cond 303.83/291.51 true :: true:false 303.83/291.51 and :: true:false -> true:false -> true:false 303.83/291.51 gr :: 0':s -> 0':s -> true:false 303.83/291.51 p :: 0':s -> 0':s 303.83/291.51 false :: true:false 303.83/291.51 0' :: 0':s 303.83/291.51 s :: 0':s -> 0':s 303.83/291.51 hole_cond1_0 :: cond 303.83/291.51 hole_true:false2_0 :: true:false 303.83/291.51 hole_0':s3_0 :: 0':s 303.83/291.51 gen_0':s4_0 :: Nat -> 0':s 303.83/291.51 303.83/291.51 303.83/291.51 Lemmas: 303.83/291.51 gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) 303.83/291.51 303.83/291.51 303.83/291.51 Generator Equations: 303.83/291.51 gen_0':s4_0(0) <=> 0' 303.83/291.51 gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) 303.83/291.51 303.83/291.51 303.83/291.51 The following defined symbols remain to be analysed: 303.83/291.51 cond 303.83/291.54 EOF