315.85/291.48 WORST_CASE(Omega(n^1), ?) 315.85/291.49 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 315.85/291.49 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 315.85/291.49 315.85/291.49 315.85/291.49 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 315.85/291.49 315.85/291.49 (0) CpxTRS 315.85/291.49 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 315.85/291.49 (2) TRS for Loop Detection 315.85/291.49 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 315.85/291.49 (4) BEST 315.85/291.49 (5) proven lower bound 315.85/291.49 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 315.85/291.49 (7) BOUNDS(n^1, INF) 315.85/291.49 (8) TRS for Loop Detection 315.85/291.49 315.85/291.49 315.85/291.49 ---------------------------------------- 315.85/291.49 315.85/291.49 (0) 315.85/291.49 Obligation: 315.85/291.49 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 315.85/291.49 315.85/291.49 315.85/291.49 The TRS R consists of the following rules: 315.85/291.49 315.85/291.49 fstsplit(0, x) -> nil 315.85/291.49 fstsplit(s(n), nil) -> nil 315.85/291.49 fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t)) 315.85/291.49 sndsplit(0, x) -> x 315.85/291.49 sndsplit(s(n), nil) -> nil 315.85/291.49 sndsplit(s(n), cons(h, t)) -> sndsplit(n, t) 315.85/291.49 empty(nil) -> true 315.85/291.49 empty(cons(h, t)) -> false 315.85/291.49 leq(0, m) -> true 315.85/291.49 leq(s(n), 0) -> false 315.85/291.49 leq(s(n), s(m)) -> leq(n, m) 315.85/291.49 length(nil) -> 0 315.85/291.49 length(cons(h, t)) -> s(length(t)) 315.85/291.49 app(nil, x) -> x 315.85/291.49 app(cons(h, t), x) -> cons(h, app(t, x)) 315.85/291.49 map_f(pid, nil) -> nil 315.85/291.49 map_f(pid, cons(h, t)) -> app(f(pid, h), map_f(pid, t)) 315.85/291.49 process(store, m) -> if1(store, m, leq(m, length(store))) 315.85/291.49 if1(store, m, true) -> if2(store, m, empty(fstsplit(m, store))) 315.85/291.49 if1(store, m, false) -> if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store)))) 315.85/291.49 if2(store, m, false) -> process(app(map_f(self, nil), sndsplit(m, store)), m) 315.85/291.49 if3(store, m, false) -> process(sndsplit(m, app(map_f(self, nil), store)), m) 315.85/291.49 315.85/291.49 S is empty. 315.85/291.49 Rewrite Strategy: FULL 315.85/291.49 ---------------------------------------- 315.85/291.49 315.85/291.49 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 315.85/291.49 Transformed a relative TRS into a decreasing-loop problem. 315.85/291.49 ---------------------------------------- 315.85/291.49 315.85/291.49 (2) 315.85/291.49 Obligation: 315.85/291.49 Analyzing the following TRS for decreasing loops: 315.85/291.49 315.85/291.49 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 315.85/291.49 315.85/291.49 315.85/291.49 The TRS R consists of the following rules: 315.85/291.49 315.85/291.49 fstsplit(0, x) -> nil 315.85/291.49 fstsplit(s(n), nil) -> nil 315.85/291.49 fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t)) 315.85/291.49 sndsplit(0, x) -> x 315.85/291.49 sndsplit(s(n), nil) -> nil 315.85/291.49 sndsplit(s(n), cons(h, t)) -> sndsplit(n, t) 315.85/291.49 empty(nil) -> true 315.85/291.49 empty(cons(h, t)) -> false 315.85/291.49 leq(0, m) -> true 315.85/291.49 leq(s(n), 0) -> false 315.85/291.49 leq(s(n), s(m)) -> leq(n, m) 315.85/291.49 length(nil) -> 0 315.85/291.49 length(cons(h, t)) -> s(length(t)) 315.85/291.49 app(nil, x) -> x 315.85/291.49 app(cons(h, t), x) -> cons(h, app(t, x)) 315.85/291.49 map_f(pid, nil) -> nil 315.85/291.49 map_f(pid, cons(h, t)) -> app(f(pid, h), map_f(pid, t)) 315.85/291.49 process(store, m) -> if1(store, m, leq(m, length(store))) 315.85/291.49 if1(store, m, true) -> if2(store, m, empty(fstsplit(m, store))) 315.85/291.49 if1(store, m, false) -> if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store)))) 315.85/291.49 if2(store, m, false) -> process(app(map_f(self, nil), sndsplit(m, store)), m) 315.85/291.49 if3(store, m, false) -> process(sndsplit(m, app(map_f(self, nil), store)), m) 315.85/291.49 315.85/291.49 S is empty. 315.85/291.49 Rewrite Strategy: FULL 315.85/291.49 ---------------------------------------- 315.85/291.49 315.85/291.49 (3) DecreasingLoopProof (LOWER BOUND(ID)) 315.85/291.49 The following loop(s) give(s) rise to the lower bound Omega(n^1): 315.85/291.49 315.85/291.49 The rewrite sequence 315.85/291.49 315.85/291.49 map_f(pid, cons(h, t)) ->^+ app(f(pid, h), map_f(pid, t)) 315.85/291.49 315.85/291.49 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 315.85/291.49 315.85/291.49 The pumping substitution is [t / cons(h, t)]. 315.85/291.49 315.85/291.49 The result substitution is [ ]. 315.85/291.49 315.85/291.49 315.85/291.49 315.85/291.49 315.85/291.49 ---------------------------------------- 315.85/291.49 315.85/291.49 (4) 315.85/291.49 Complex Obligation (BEST) 315.85/291.49 315.85/291.49 ---------------------------------------- 315.85/291.49 315.85/291.49 (5) 315.85/291.49 Obligation: 315.85/291.49 Proved the lower bound n^1 for the following obligation: 315.85/291.49 315.85/291.49 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 315.85/291.49 315.85/291.49 315.85/291.49 The TRS R consists of the following rules: 315.85/291.49 315.85/291.49 fstsplit(0, x) -> nil 315.85/291.49 fstsplit(s(n), nil) -> nil 315.85/291.49 fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t)) 315.85/291.49 sndsplit(0, x) -> x 315.85/291.49 sndsplit(s(n), nil) -> nil 315.85/291.49 sndsplit(s(n), cons(h, t)) -> sndsplit(n, t) 315.85/291.49 empty(nil) -> true 315.85/291.49 empty(cons(h, t)) -> false 315.85/291.49 leq(0, m) -> true 315.85/291.49 leq(s(n), 0) -> false 315.85/291.49 leq(s(n), s(m)) -> leq(n, m) 315.85/291.49 length(nil) -> 0 315.85/291.49 length(cons(h, t)) -> s(length(t)) 315.85/291.49 app(nil, x) -> x 315.85/291.49 app(cons(h, t), x) -> cons(h, app(t, x)) 315.85/291.49 map_f(pid, nil) -> nil 315.85/291.49 map_f(pid, cons(h, t)) -> app(f(pid, h), map_f(pid, t)) 315.85/291.49 process(store, m) -> if1(store, m, leq(m, length(store))) 315.85/291.49 if1(store, m, true) -> if2(store, m, empty(fstsplit(m, store))) 315.85/291.49 if1(store, m, false) -> if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store)))) 315.85/291.49 if2(store, m, false) -> process(app(map_f(self, nil), sndsplit(m, store)), m) 315.85/291.49 if3(store, m, false) -> process(sndsplit(m, app(map_f(self, nil), store)), m) 315.85/291.49 315.85/291.49 S is empty. 315.85/291.49 Rewrite Strategy: FULL 315.85/291.49 ---------------------------------------- 315.85/291.49 315.85/291.49 (6) LowerBoundPropagationProof (FINISHED) 315.85/291.49 Propagated lower bound. 315.85/291.49 ---------------------------------------- 315.85/291.49 315.85/291.49 (7) 315.85/291.49 BOUNDS(n^1, INF) 315.85/291.49 315.85/291.49 ---------------------------------------- 315.85/291.49 315.85/291.49 (8) 315.85/291.49 Obligation: 315.85/291.49 Analyzing the following TRS for decreasing loops: 315.85/291.49 315.85/291.49 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 315.85/291.49 315.85/291.49 315.85/291.49 The TRS R consists of the following rules: 315.85/291.49 315.85/291.49 fstsplit(0, x) -> nil 315.85/291.49 fstsplit(s(n), nil) -> nil 315.85/291.49 fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t)) 315.85/291.49 sndsplit(0, x) -> x 315.85/291.49 sndsplit(s(n), nil) -> nil 315.85/291.49 sndsplit(s(n), cons(h, t)) -> sndsplit(n, t) 315.85/291.49 empty(nil) -> true 315.85/291.49 empty(cons(h, t)) -> false 315.85/291.49 leq(0, m) -> true 315.85/291.49 leq(s(n), 0) -> false 315.85/291.49 leq(s(n), s(m)) -> leq(n, m) 315.85/291.49 length(nil) -> 0 315.85/291.49 length(cons(h, t)) -> s(length(t)) 315.85/291.49 app(nil, x) -> x 315.85/291.49 app(cons(h, t), x) -> cons(h, app(t, x)) 315.85/291.49 map_f(pid, nil) -> nil 315.85/291.49 map_f(pid, cons(h, t)) -> app(f(pid, h), map_f(pid, t)) 315.85/291.49 process(store, m) -> if1(store, m, leq(m, length(store))) 315.85/291.49 if1(store, m, true) -> if2(store, m, empty(fstsplit(m, store))) 315.85/291.49 if1(store, m, false) -> if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store)))) 315.85/291.49 if2(store, m, false) -> process(app(map_f(self, nil), sndsplit(m, store)), m) 315.85/291.49 if3(store, m, false) -> process(sndsplit(m, app(map_f(self, nil), store)), m) 315.85/291.49 315.85/291.49 S is empty. 315.85/291.49 Rewrite Strategy: FULL 315.93/291.51 EOF