325.79/291.48 WORST_CASE(Omega(n^1), ?) 325.87/291.49 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 325.87/291.49 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 325.87/291.49 325.87/291.49 325.87/291.49 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 325.87/291.49 325.87/291.49 (0) CpxTRS 325.87/291.49 (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 325.87/291.49 (2) CpxTRS 325.87/291.49 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 325.87/291.49 (4) typed CpxTrs 325.87/291.49 (5) OrderProof [LOWER BOUND(ID), 0 ms] 325.87/291.49 (6) typed CpxTrs 325.87/291.49 (7) RewriteLemmaProof [LOWER BOUND(ID), 284 ms] 325.87/291.49 (8) BEST 325.87/291.49 (9) proven lower bound 325.87/291.49 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 325.87/291.49 (11) BOUNDS(n^1, INF) 325.87/291.49 (12) typed CpxTrs 325.87/291.49 (13) RewriteLemmaProof [LOWER BOUND(ID), 95 ms] 325.87/291.49 (14) typed CpxTrs 325.87/291.49 (15) RewriteLemmaProof [LOWER BOUND(ID), 64 ms] 325.87/291.49 (16) BOUNDS(1, INF) 325.87/291.49 325.87/291.49 325.87/291.49 ---------------------------------------- 325.87/291.49 325.87/291.49 (0) 325.87/291.49 Obligation: 325.87/291.49 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 325.87/291.49 325.87/291.49 325.87/291.49 The TRS R consists of the following rules: 325.87/291.49 325.87/291.49 minus(x, 0) -> x 325.87/291.49 minus(s(x), s(y)) -> minus(x, y) 325.87/291.49 double(0) -> 0 325.87/291.49 double(s(x)) -> s(s(double(x))) 325.87/291.49 plus(0, y) -> y 325.87/291.49 plus(s(x), y) -> s(plus(x, y)) 325.87/291.49 plus(s(x), y) -> plus(x, s(y)) 325.87/291.49 plus(s(x), y) -> s(plus(minus(x, y), double(y))) 325.87/291.49 plus(s(plus(x, y)), z) -> s(plus(plus(x, y), z)) 325.87/291.49 325.87/291.49 S is empty. 325.87/291.49 Rewrite Strategy: FULL 325.87/291.49 ---------------------------------------- 325.87/291.49 325.87/291.49 (1) RenamingProof (BOTH BOUNDS(ID, ID)) 325.87/291.49 Renamed function symbols to avoid clashes with predefined symbol. 325.87/291.49 ---------------------------------------- 325.87/291.49 325.87/291.49 (2) 325.87/291.49 Obligation: 325.87/291.49 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 325.87/291.49 325.87/291.49 325.87/291.49 The TRS R consists of the following rules: 325.87/291.49 325.87/291.49 minus(x, 0') -> x 325.87/291.49 minus(s(x), s(y)) -> minus(x, y) 325.87/291.49 double(0') -> 0' 325.87/291.49 double(s(x)) -> s(s(double(x))) 325.87/291.49 plus(0', y) -> y 325.87/291.49 plus(s(x), y) -> s(plus(x, y)) 325.87/291.49 plus(s(x), y) -> plus(x, s(y)) 325.87/291.49 plus(s(x), y) -> s(plus(minus(x, y), double(y))) 325.87/291.49 plus(s(plus(x, y)), z) -> s(plus(plus(x, y), z)) 325.87/291.49 325.87/291.49 S is empty. 325.87/291.49 Rewrite Strategy: FULL 325.87/291.49 ---------------------------------------- 325.87/291.49 325.87/291.49 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 325.87/291.49 Infered types. 325.87/291.49 ---------------------------------------- 325.87/291.49 325.87/291.49 (4) 325.87/291.49 Obligation: 325.87/291.49 TRS: 325.87/291.49 Rules: 325.87/291.49 minus(x, 0') -> x 325.87/291.49 minus(s(x), s(y)) -> minus(x, y) 325.87/291.49 double(0') -> 0' 325.87/291.49 double(s(x)) -> s(s(double(x))) 325.87/291.49 plus(0', y) -> y 325.87/291.49 plus(s(x), y) -> s(plus(x, y)) 325.87/291.49 plus(s(x), y) -> plus(x, s(y)) 325.87/291.49 plus(s(x), y) -> s(plus(minus(x, y), double(y))) 325.87/291.49 plus(s(plus(x, y)), z) -> s(plus(plus(x, y), z)) 325.87/291.49 325.87/291.49 Types: 325.87/291.49 minus :: 0':s -> 0':s -> 0':s 325.87/291.49 0' :: 0':s 325.87/291.49 s :: 0':s -> 0':s 325.87/291.49 double :: 0':s -> 0':s 325.87/291.49 plus :: 0':s -> 0':s -> 0':s 325.87/291.49 hole_0':s1_0 :: 0':s 325.87/291.49 gen_0':s2_0 :: Nat -> 0':s 325.87/291.49 325.87/291.49 ---------------------------------------- 325.87/291.49 325.87/291.49 (5) OrderProof (LOWER BOUND(ID)) 325.87/291.49 Heuristically decided to analyse the following defined symbols: 325.87/291.49 minus, double, plus 325.87/291.49 325.87/291.49 They will be analysed ascendingly in the following order: 325.87/291.49 minus < plus 325.87/291.49 double < plus 325.87/291.49 325.87/291.49 ---------------------------------------- 325.87/291.49 325.87/291.49 (6) 325.87/291.49 Obligation: 325.87/291.49 TRS: 325.87/291.49 Rules: 325.87/291.49 minus(x, 0') -> x 325.87/291.49 minus(s(x), s(y)) -> minus(x, y) 325.87/291.49 double(0') -> 0' 325.87/291.49 double(s(x)) -> s(s(double(x))) 325.87/291.49 plus(0', y) -> y 325.87/291.49 plus(s(x), y) -> s(plus(x, y)) 325.87/291.49 plus(s(x), y) -> plus(x, s(y)) 325.87/291.49 plus(s(x), y) -> s(plus(minus(x, y), double(y))) 325.87/291.49 plus(s(plus(x, y)), z) -> s(plus(plus(x, y), z)) 325.87/291.49 325.87/291.49 Types: 325.87/291.49 minus :: 0':s -> 0':s -> 0':s 325.87/291.49 0' :: 0':s 325.87/291.49 s :: 0':s -> 0':s 325.87/291.49 double :: 0':s -> 0':s 325.87/291.49 plus :: 0':s -> 0':s -> 0':s 325.87/291.49 hole_0':s1_0 :: 0':s 325.87/291.49 gen_0':s2_0 :: Nat -> 0':s 325.87/291.49 325.87/291.49 325.87/291.49 Generator Equations: 325.87/291.49 gen_0':s2_0(0) <=> 0' 325.87/291.49 gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) 325.87/291.49 325.87/291.49 325.87/291.49 The following defined symbols remain to be analysed: 325.87/291.49 minus, double, plus 325.87/291.49 325.87/291.49 They will be analysed ascendingly in the following order: 325.87/291.49 minus < plus 325.87/291.49 double < plus 325.87/291.49 325.87/291.49 ---------------------------------------- 325.87/291.49 325.87/291.49 (7) RewriteLemmaProof (LOWER BOUND(ID)) 325.87/291.49 Proved the following rewrite lemma: 325.87/291.49 minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(0), rt in Omega(1 + n4_0) 325.87/291.49 325.87/291.49 Induction Base: 325.87/291.49 minus(gen_0':s2_0(0), gen_0':s2_0(0)) ->_R^Omega(1) 325.87/291.49 gen_0':s2_0(0) 325.87/291.49 325.87/291.49 Induction Step: 325.87/291.49 minus(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(+(n4_0, 1))) ->_R^Omega(1) 325.87/291.49 minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) ->_IH 325.87/291.49 gen_0':s2_0(0) 325.87/291.49 325.87/291.49 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 325.87/291.49 ---------------------------------------- 325.87/291.49 325.87/291.49 (8) 325.87/291.49 Complex Obligation (BEST) 325.87/291.49 325.87/291.49 ---------------------------------------- 325.87/291.49 325.87/291.49 (9) 325.87/291.49 Obligation: 325.87/291.49 Proved the lower bound n^1 for the following obligation: 325.87/291.49 325.87/291.49 TRS: 325.87/291.49 Rules: 325.87/291.49 minus(x, 0') -> x 325.87/291.49 minus(s(x), s(y)) -> minus(x, y) 325.87/291.49 double(0') -> 0' 325.87/291.49 double(s(x)) -> s(s(double(x))) 325.87/291.49 plus(0', y) -> y 325.87/291.49 plus(s(x), y) -> s(plus(x, y)) 325.87/291.49 plus(s(x), y) -> plus(x, s(y)) 325.87/291.49 plus(s(x), y) -> s(plus(minus(x, y), double(y))) 325.87/291.49 plus(s(plus(x, y)), z) -> s(plus(plus(x, y), z)) 325.87/291.49 325.87/291.49 Types: 325.87/291.49 minus :: 0':s -> 0':s -> 0':s 325.87/291.49 0' :: 0':s 325.87/291.49 s :: 0':s -> 0':s 325.87/291.49 double :: 0':s -> 0':s 325.87/291.49 plus :: 0':s -> 0':s -> 0':s 325.87/291.49 hole_0':s1_0 :: 0':s 325.87/291.49 gen_0':s2_0 :: Nat -> 0':s 325.87/291.49 325.87/291.49 325.87/291.49 Generator Equations: 325.87/291.49 gen_0':s2_0(0) <=> 0' 325.87/291.49 gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) 325.87/291.49 325.87/291.49 325.87/291.49 The following defined symbols remain to be analysed: 325.87/291.49 minus, double, plus 325.87/291.49 325.87/291.49 They will be analysed ascendingly in the following order: 325.87/291.49 minus < plus 325.87/291.49 double < plus 325.87/291.49 325.87/291.49 ---------------------------------------- 325.87/291.49 325.87/291.49 (10) LowerBoundPropagationProof (FINISHED) 325.87/291.49 Propagated lower bound. 325.87/291.49 ---------------------------------------- 325.87/291.49 325.87/291.49 (11) 325.87/291.49 BOUNDS(n^1, INF) 325.87/291.49 325.87/291.49 ---------------------------------------- 325.87/291.49 325.87/291.49 (12) 325.87/291.49 Obligation: 325.87/291.49 TRS: 325.87/291.49 Rules: 325.87/291.49 minus(x, 0') -> x 325.87/291.49 minus(s(x), s(y)) -> minus(x, y) 325.87/291.49 double(0') -> 0' 325.87/291.49 double(s(x)) -> s(s(double(x))) 325.87/291.49 plus(0', y) -> y 325.87/291.49 plus(s(x), y) -> s(plus(x, y)) 325.87/291.49 plus(s(x), y) -> plus(x, s(y)) 325.87/291.49 plus(s(x), y) -> s(plus(minus(x, y), double(y))) 325.87/291.49 plus(s(plus(x, y)), z) -> s(plus(plus(x, y), z)) 325.87/291.49 325.87/291.49 Types: 325.87/291.49 minus :: 0':s -> 0':s -> 0':s 325.87/291.49 0' :: 0':s 325.87/291.49 s :: 0':s -> 0':s 325.87/291.49 double :: 0':s -> 0':s 325.87/291.49 plus :: 0':s -> 0':s -> 0':s 325.87/291.49 hole_0':s1_0 :: 0':s 325.87/291.49 gen_0':s2_0 :: Nat -> 0':s 325.87/291.49 325.87/291.49 325.87/291.49 Lemmas: 325.87/291.49 minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(0), rt in Omega(1 + n4_0) 325.87/291.49 325.87/291.49 325.87/291.49 Generator Equations: 325.87/291.49 gen_0':s2_0(0) <=> 0' 325.87/291.49 gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) 325.87/291.49 325.87/291.49 325.87/291.49 The following defined symbols remain to be analysed: 325.87/291.49 double, plus 325.87/291.49 325.87/291.49 They will be analysed ascendingly in the following order: 325.87/291.49 double < plus 325.87/291.49 325.87/291.49 ---------------------------------------- 325.87/291.49 325.87/291.49 (13) RewriteLemmaProof (LOWER BOUND(ID)) 325.87/291.49 Proved the following rewrite lemma: 325.87/291.49 double(gen_0':s2_0(n240_0)) -> gen_0':s2_0(*(2, n240_0)), rt in Omega(1 + n240_0) 325.87/291.49 325.87/291.49 Induction Base: 325.87/291.49 double(gen_0':s2_0(0)) ->_R^Omega(1) 325.87/291.49 0' 325.87/291.49 325.87/291.49 Induction Step: 325.87/291.49 double(gen_0':s2_0(+(n240_0, 1))) ->_R^Omega(1) 325.87/291.49 s(s(double(gen_0':s2_0(n240_0)))) ->_IH 325.87/291.49 s(s(gen_0':s2_0(*(2, c241_0)))) 325.87/291.49 325.87/291.49 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 325.87/291.49 ---------------------------------------- 325.87/291.49 325.87/291.49 (14) 325.87/291.49 Obligation: 325.87/291.49 TRS: 325.87/291.49 Rules: 325.87/291.49 minus(x, 0') -> x 325.87/291.49 minus(s(x), s(y)) -> minus(x, y) 325.87/291.49 double(0') -> 0' 325.87/291.49 double(s(x)) -> s(s(double(x))) 325.87/291.49 plus(0', y) -> y 325.87/291.49 plus(s(x), y) -> s(plus(x, y)) 325.87/291.49 plus(s(x), y) -> plus(x, s(y)) 325.87/291.49 plus(s(x), y) -> s(plus(minus(x, y), double(y))) 325.87/291.49 plus(s(plus(x, y)), z) -> s(plus(plus(x, y), z)) 325.87/291.49 325.87/291.49 Types: 325.87/291.49 minus :: 0':s -> 0':s -> 0':s 325.87/291.49 0' :: 0':s 325.87/291.49 s :: 0':s -> 0':s 325.87/291.49 double :: 0':s -> 0':s 325.87/291.49 plus :: 0':s -> 0':s -> 0':s 325.87/291.49 hole_0':s1_0 :: 0':s 325.87/291.49 gen_0':s2_0 :: Nat -> 0':s 325.87/291.49 325.87/291.49 325.87/291.49 Lemmas: 325.87/291.49 minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(0), rt in Omega(1 + n4_0) 325.87/291.49 double(gen_0':s2_0(n240_0)) -> gen_0':s2_0(*(2, n240_0)), rt in Omega(1 + n240_0) 325.87/291.50 325.87/291.50 325.87/291.50 Generator Equations: 325.87/291.50 gen_0':s2_0(0) <=> 0' 325.87/291.50 gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) 325.87/291.50 325.87/291.50 325.87/291.50 The following defined symbols remain to be analysed: 325.87/291.50 plus 325.87/291.50 ---------------------------------------- 325.87/291.50 325.87/291.50 (15) RewriteLemmaProof (LOWER BOUND(ID)) 325.87/291.50 Proved the following rewrite lemma: 325.87/291.50 plus(gen_0':s2_0(n484_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n484_0, b)), rt in Omega(1 + n484_0) 325.87/291.50 325.87/291.50 Induction Base: 325.87/291.50 plus(gen_0':s2_0(0), gen_0':s2_0(b)) ->_R^Omega(1) 325.87/291.50 gen_0':s2_0(b) 325.87/291.50 325.87/291.50 Induction Step: 325.87/291.50 plus(gen_0':s2_0(+(n484_0, 1)), gen_0':s2_0(b)) ->_R^Omega(1) 325.87/291.50 s(plus(gen_0':s2_0(n484_0), gen_0':s2_0(b))) ->_IH 325.87/291.50 s(gen_0':s2_0(+(b, c485_0))) 325.87/291.50 325.87/291.50 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 325.87/291.50 ---------------------------------------- 325.87/291.50 325.87/291.50 (16) 325.87/291.50 BOUNDS(1, INF) 325.87/291.53 EOF