310.20/291.51 WORST_CASE(Omega(n^1), ?) 310.20/291.52 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 310.20/291.52 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 310.20/291.52 310.20/291.52 310.20/291.52 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 310.20/291.52 310.20/291.52 (0) CpxTRS 310.20/291.52 (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 310.20/291.52 (2) CpxTRS 310.20/291.52 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 310.20/291.52 (4) typed CpxTrs 310.20/291.52 (5) OrderProof [LOWER BOUND(ID), 0 ms] 310.20/291.52 (6) typed CpxTrs 310.20/291.52 (7) RewriteLemmaProof [LOWER BOUND(ID), 276 ms] 310.20/291.52 (8) BEST 310.20/291.52 (9) proven lower bound 310.20/291.52 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 310.20/291.52 (11) BOUNDS(n^1, INF) 310.20/291.52 (12) typed CpxTrs 310.20/291.52 (13) RewriteLemmaProof [LOWER BOUND(ID), 862 ms] 310.20/291.52 (14) typed CpxTrs 310.20/291.52 310.20/291.52 310.20/291.52 ---------------------------------------- 310.20/291.52 310.20/291.52 (0) 310.20/291.52 Obligation: 310.20/291.52 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 310.20/291.52 310.20/291.52 310.20/291.52 The TRS R consists of the following rules: 310.20/291.52 310.20/291.52 le(0, y) -> true 310.20/291.52 le(s(x), 0) -> false 310.20/291.52 le(s(x), s(y)) -> le(x, y) 310.20/291.52 pred(s(x)) -> x 310.20/291.52 minus(x, 0) -> x 310.20/291.52 minus(x, s(y)) -> pred(minus(x, y)) 310.20/291.52 gcd(0, y) -> y 310.20/291.52 gcd(s(x), 0) -> s(x) 310.20/291.52 gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) 310.20/291.52 if_gcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y)) 310.20/291.52 if_gcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x)) 310.20/291.52 310.20/291.52 S is empty. 310.20/291.52 Rewrite Strategy: FULL 310.20/291.52 ---------------------------------------- 310.20/291.52 310.20/291.52 (1) RenamingProof (BOTH BOUNDS(ID, ID)) 310.20/291.52 Renamed function symbols to avoid clashes with predefined symbol. 310.20/291.52 ---------------------------------------- 310.20/291.52 310.20/291.52 (2) 310.20/291.52 Obligation: 310.20/291.52 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 310.20/291.52 310.20/291.52 310.20/291.52 The TRS R consists of the following rules: 310.20/291.52 310.20/291.52 le(0', y) -> true 310.20/291.52 le(s(x), 0') -> false 310.20/291.52 le(s(x), s(y)) -> le(x, y) 310.20/291.52 pred(s(x)) -> x 310.20/291.52 minus(x, 0') -> x 310.20/291.52 minus(x, s(y)) -> pred(minus(x, y)) 310.20/291.52 gcd(0', y) -> y 310.20/291.52 gcd(s(x), 0') -> s(x) 310.20/291.52 gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) 310.20/291.52 if_gcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y)) 310.20/291.52 if_gcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x)) 310.20/291.52 310.20/291.52 S is empty. 310.20/291.52 Rewrite Strategy: FULL 310.20/291.52 ---------------------------------------- 310.20/291.52 310.20/291.52 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 310.20/291.52 Infered types. 310.20/291.52 ---------------------------------------- 310.20/291.52 310.20/291.52 (4) 310.20/291.52 Obligation: 310.20/291.52 TRS: 310.20/291.52 Rules: 310.20/291.52 le(0', y) -> true 310.20/291.52 le(s(x), 0') -> false 310.20/291.52 le(s(x), s(y)) -> le(x, y) 310.20/291.52 pred(s(x)) -> x 310.20/291.52 minus(x, 0') -> x 310.20/291.52 minus(x, s(y)) -> pred(minus(x, y)) 310.20/291.52 gcd(0', y) -> y 310.20/291.52 gcd(s(x), 0') -> s(x) 310.20/291.52 gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) 310.20/291.52 if_gcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y)) 310.20/291.52 if_gcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x)) 310.20/291.52 310.20/291.52 Types: 310.20/291.52 le :: 0':s -> 0':s -> true:false 310.20/291.52 0' :: 0':s 310.20/291.52 true :: true:false 310.20/291.52 s :: 0':s -> 0':s 310.20/291.52 false :: true:false 310.20/291.52 pred :: 0':s -> 0':s 310.20/291.52 minus :: 0':s -> 0':s -> 0':s 310.20/291.52 gcd :: 0':s -> 0':s -> 0':s 310.20/291.52 if_gcd :: true:false -> 0':s -> 0':s -> 0':s 310.20/291.52 hole_true:false1_0 :: true:false 310.20/291.52 hole_0':s2_0 :: 0':s 310.20/291.52 gen_0':s3_0 :: Nat -> 0':s 310.20/291.52 310.20/291.52 ---------------------------------------- 310.20/291.52 310.20/291.52 (5) OrderProof (LOWER BOUND(ID)) 310.20/291.52 Heuristically decided to analyse the following defined symbols: 310.20/291.52 le, minus, gcd 310.20/291.52 310.20/291.52 They will be analysed ascendingly in the following order: 310.20/291.52 le < gcd 310.20/291.52 minus < gcd 310.20/291.52 310.20/291.52 ---------------------------------------- 310.20/291.52 310.20/291.52 (6) 310.20/291.52 Obligation: 310.20/291.52 TRS: 310.20/291.52 Rules: 310.20/291.52 le(0', y) -> true 310.20/291.52 le(s(x), 0') -> false 310.20/291.52 le(s(x), s(y)) -> le(x, y) 310.20/291.52 pred(s(x)) -> x 310.20/291.52 minus(x, 0') -> x 310.20/291.52 minus(x, s(y)) -> pred(minus(x, y)) 310.20/291.52 gcd(0', y) -> y 310.20/291.52 gcd(s(x), 0') -> s(x) 310.20/291.52 gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) 310.20/291.52 if_gcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y)) 310.20/291.52 if_gcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x)) 310.20/291.52 310.20/291.52 Types: 310.20/291.52 le :: 0':s -> 0':s -> true:false 310.20/291.52 0' :: 0':s 310.20/291.52 true :: true:false 310.20/291.52 s :: 0':s -> 0':s 310.20/291.52 false :: true:false 310.20/291.52 pred :: 0':s -> 0':s 310.20/291.52 minus :: 0':s -> 0':s -> 0':s 310.20/291.52 gcd :: 0':s -> 0':s -> 0':s 310.20/291.52 if_gcd :: true:false -> 0':s -> 0':s -> 0':s 310.20/291.52 hole_true:false1_0 :: true:false 310.20/291.52 hole_0':s2_0 :: 0':s 310.20/291.52 gen_0':s3_0 :: Nat -> 0':s 310.20/291.52 310.20/291.52 310.20/291.52 Generator Equations: 310.20/291.52 gen_0':s3_0(0) <=> 0' 310.20/291.52 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 310.20/291.52 310.20/291.52 310.20/291.52 The following defined symbols remain to be analysed: 310.20/291.52 le, minus, gcd 310.20/291.52 310.20/291.52 They will be analysed ascendingly in the following order: 310.20/291.52 le < gcd 310.20/291.52 minus < gcd 310.20/291.52 310.20/291.52 ---------------------------------------- 310.20/291.52 310.20/291.52 (7) RewriteLemmaProof (LOWER BOUND(ID)) 310.20/291.52 Proved the following rewrite lemma: 310.20/291.52 le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) 310.20/291.52 310.20/291.52 Induction Base: 310.20/291.52 le(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) 310.20/291.52 true 310.20/291.52 310.20/291.52 Induction Step: 310.20/291.52 le(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) 310.20/291.52 le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) ->_IH 310.20/291.52 true 310.20/291.52 310.20/291.52 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 310.20/291.52 ---------------------------------------- 310.20/291.52 310.20/291.52 (8) 310.20/291.52 Complex Obligation (BEST) 310.20/291.52 310.20/291.52 ---------------------------------------- 310.20/291.52 310.20/291.52 (9) 310.20/291.52 Obligation: 310.20/291.52 Proved the lower bound n^1 for the following obligation: 310.20/291.52 310.20/291.52 TRS: 310.20/291.52 Rules: 310.20/291.52 le(0', y) -> true 310.20/291.52 le(s(x), 0') -> false 310.20/291.52 le(s(x), s(y)) -> le(x, y) 310.20/291.52 pred(s(x)) -> x 310.20/291.52 minus(x, 0') -> x 310.20/291.52 minus(x, s(y)) -> pred(minus(x, y)) 310.20/291.52 gcd(0', y) -> y 310.20/291.52 gcd(s(x), 0') -> s(x) 310.20/291.52 gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) 310.20/291.52 if_gcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y)) 310.20/291.52 if_gcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x)) 310.20/291.52 310.20/291.52 Types: 310.20/291.52 le :: 0':s -> 0':s -> true:false 310.20/291.52 0' :: 0':s 310.20/291.52 true :: true:false 310.20/291.52 s :: 0':s -> 0':s 310.20/291.52 false :: true:false 310.20/291.52 pred :: 0':s -> 0':s 310.20/291.52 minus :: 0':s -> 0':s -> 0':s 310.20/291.52 gcd :: 0':s -> 0':s -> 0':s 310.20/291.52 if_gcd :: true:false -> 0':s -> 0':s -> 0':s 310.20/291.52 hole_true:false1_0 :: true:false 310.20/291.52 hole_0':s2_0 :: 0':s 310.20/291.52 gen_0':s3_0 :: Nat -> 0':s 310.20/291.52 310.20/291.52 310.20/291.52 Generator Equations: 310.20/291.52 gen_0':s3_0(0) <=> 0' 310.20/291.52 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 310.20/291.52 310.20/291.52 310.20/291.52 The following defined symbols remain to be analysed: 310.20/291.52 le, minus, gcd 310.20/291.52 310.20/291.52 They will be analysed ascendingly in the following order: 310.20/291.52 le < gcd 310.20/291.52 minus < gcd 310.20/291.52 310.20/291.52 ---------------------------------------- 310.20/291.52 310.20/291.52 (10) LowerBoundPropagationProof (FINISHED) 310.20/291.52 Propagated lower bound. 310.20/291.52 ---------------------------------------- 310.20/291.52 310.20/291.52 (11) 310.20/291.52 BOUNDS(n^1, INF) 310.20/291.52 310.20/291.52 ---------------------------------------- 310.20/291.52 310.20/291.52 (12) 310.20/291.52 Obligation: 310.20/291.52 TRS: 310.20/291.52 Rules: 310.20/291.52 le(0', y) -> true 310.20/291.52 le(s(x), 0') -> false 310.20/291.52 le(s(x), s(y)) -> le(x, y) 310.20/291.52 pred(s(x)) -> x 310.20/291.52 minus(x, 0') -> x 310.20/291.52 minus(x, s(y)) -> pred(minus(x, y)) 310.20/291.52 gcd(0', y) -> y 310.20/291.52 gcd(s(x), 0') -> s(x) 310.20/291.52 gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) 310.20/291.52 if_gcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y)) 310.20/291.52 if_gcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x)) 310.20/291.52 310.20/291.52 Types: 310.20/291.52 le :: 0':s -> 0':s -> true:false 310.20/291.52 0' :: 0':s 310.20/291.52 true :: true:false 310.20/291.52 s :: 0':s -> 0':s 310.20/291.52 false :: true:false 310.20/291.52 pred :: 0':s -> 0':s 310.20/291.52 minus :: 0':s -> 0':s -> 0':s 310.20/291.52 gcd :: 0':s -> 0':s -> 0':s 310.20/291.52 if_gcd :: true:false -> 0':s -> 0':s -> 0':s 310.20/291.52 hole_true:false1_0 :: true:false 310.20/291.52 hole_0':s2_0 :: 0':s 310.20/291.52 gen_0':s3_0 :: Nat -> 0':s 310.20/291.52 310.20/291.52 310.20/291.52 Lemmas: 310.20/291.52 le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) 310.20/291.52 310.20/291.52 310.20/291.52 Generator Equations: 310.20/291.52 gen_0':s3_0(0) <=> 0' 310.20/291.52 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 310.20/291.52 310.20/291.52 310.20/291.52 The following defined symbols remain to be analysed: 310.20/291.52 minus, gcd 310.20/291.52 310.20/291.52 They will be analysed ascendingly in the following order: 310.20/291.52 minus < gcd 310.20/291.52 310.20/291.52 ---------------------------------------- 310.20/291.52 310.20/291.52 (13) RewriteLemmaProof (LOWER BOUND(ID)) 310.20/291.52 Proved the following rewrite lemma: 310.20/291.52 minus(gen_0':s3_0(a), gen_0':s3_0(+(1, n258_0))) -> *4_0, rt in Omega(n258_0) 310.20/291.52 310.20/291.52 Induction Base: 310.20/291.52 minus(gen_0':s3_0(a), gen_0':s3_0(+(1, 0))) 310.20/291.52 310.20/291.52 Induction Step: 310.20/291.52 minus(gen_0':s3_0(a), gen_0':s3_0(+(1, +(n258_0, 1)))) ->_R^Omega(1) 310.20/291.52 pred(minus(gen_0':s3_0(a), gen_0':s3_0(+(1, n258_0)))) ->_IH 310.20/291.52 pred(*4_0) 310.20/291.52 310.20/291.52 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 310.20/291.52 ---------------------------------------- 310.20/291.52 310.20/291.52 (14) 310.20/291.52 Obligation: 310.20/291.52 TRS: 310.20/291.52 Rules: 310.20/291.52 le(0', y) -> true 310.20/291.52 le(s(x), 0') -> false 310.20/291.52 le(s(x), s(y)) -> le(x, y) 310.20/291.52 pred(s(x)) -> x 310.20/291.52 minus(x, 0') -> x 310.20/291.52 minus(x, s(y)) -> pred(minus(x, y)) 310.20/291.52 gcd(0', y) -> y 310.20/291.52 gcd(s(x), 0') -> s(x) 310.20/291.52 gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) 310.20/291.52 if_gcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y)) 310.20/291.52 if_gcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x)) 310.20/291.52 310.20/291.52 Types: 310.20/291.52 le :: 0':s -> 0':s -> true:false 310.20/291.52 0' :: 0':s 310.20/291.52 true :: true:false 310.20/291.52 s :: 0':s -> 0':s 310.20/291.52 false :: true:false 310.20/291.52 pred :: 0':s -> 0':s 310.20/291.52 minus :: 0':s -> 0':s -> 0':s 310.20/291.52 gcd :: 0':s -> 0':s -> 0':s 310.20/291.52 if_gcd :: true:false -> 0':s -> 0':s -> 0':s 310.20/291.52 hole_true:false1_0 :: true:false 310.20/291.52 hole_0':s2_0 :: 0':s 310.20/291.52 gen_0':s3_0 :: Nat -> 0':s 310.20/291.52 310.20/291.52 310.20/291.52 Lemmas: 310.20/291.52 le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) 310.20/291.52 minus(gen_0':s3_0(a), gen_0':s3_0(+(1, n258_0))) -> *4_0, rt in Omega(n258_0) 310.20/291.52 310.20/291.52 310.20/291.52 Generator Equations: 310.20/291.52 gen_0':s3_0(0) <=> 0' 310.20/291.52 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 310.20/291.52 310.20/291.52 310.20/291.52 The following defined symbols remain to be analysed: 310.20/291.52 gcd 310.28/291.55 EOF