308.86/291.58 WORST_CASE(Omega(n^1), ?) 308.86/291.59 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 308.86/291.59 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 308.86/291.59 308.86/291.59 308.86/291.59 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 308.86/291.59 308.86/291.59 (0) CpxTRS 308.86/291.59 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 308.86/291.59 (2) TRS for Loop Detection 308.86/291.59 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 308.86/291.59 (4) BEST 308.86/291.59 (5) proven lower bound 308.86/291.59 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 308.86/291.59 (7) BOUNDS(n^1, INF) 308.86/291.59 (8) TRS for Loop Detection 308.86/291.59 308.86/291.59 308.86/291.59 ---------------------------------------- 308.86/291.59 308.86/291.59 (0) 308.86/291.59 Obligation: 308.86/291.59 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 308.86/291.59 308.86/291.59 308.86/291.59 The TRS R consists of the following rules: 308.86/291.59 308.86/291.59 eq(0, 0) -> true 308.86/291.59 eq(0, s(x)) -> false 308.86/291.59 eq(s(x), 0) -> false 308.86/291.59 eq(s(x), s(y)) -> eq(x, y) 308.86/291.59 le(0, y) -> true 308.86/291.59 le(s(x), 0) -> false 308.86/291.59 le(s(x), s(y)) -> le(x, y) 308.86/291.59 app(nil, y) -> y 308.86/291.59 app(add(n, x), y) -> add(n, app(x, y)) 308.86/291.59 min(add(n, nil)) -> n 308.86/291.59 min(add(n, add(m, x))) -> if_min(le(n, m), add(n, add(m, x))) 308.86/291.59 if_min(true, add(n, add(m, x))) -> min(add(n, x)) 308.86/291.59 if_min(false, add(n, add(m, x))) -> min(add(m, x)) 308.86/291.59 rm(n, nil) -> nil 308.86/291.59 rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) 308.86/291.59 if_rm(true, n, add(m, x)) -> rm(n, x) 308.86/291.59 if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) 308.86/291.59 minsort(nil, nil) -> nil 308.86/291.59 minsort(add(n, x), y) -> if_minsort(eq(n, min(add(n, x))), add(n, x), y) 308.86/291.59 if_minsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil)) 308.86/291.59 if_minsort(false, add(n, x), y) -> minsort(x, add(n, y)) 308.86/291.59 308.86/291.59 S is empty. 308.86/291.59 Rewrite Strategy: FULL 308.86/291.59 ---------------------------------------- 308.86/291.59 308.86/291.59 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 308.86/291.59 Transformed a relative TRS into a decreasing-loop problem. 308.86/291.59 ---------------------------------------- 308.86/291.59 308.86/291.59 (2) 308.86/291.59 Obligation: 308.86/291.59 Analyzing the following TRS for decreasing loops: 308.86/291.59 308.86/291.59 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 308.86/291.59 308.86/291.59 308.86/291.59 The TRS R consists of the following rules: 308.86/291.59 308.86/291.59 eq(0, 0) -> true 308.86/291.59 eq(0, s(x)) -> false 308.86/291.59 eq(s(x), 0) -> false 308.86/291.59 eq(s(x), s(y)) -> eq(x, y) 308.86/291.59 le(0, y) -> true 308.86/291.59 le(s(x), 0) -> false 308.86/291.59 le(s(x), s(y)) -> le(x, y) 308.86/291.59 app(nil, y) -> y 308.86/291.59 app(add(n, x), y) -> add(n, app(x, y)) 308.86/291.59 min(add(n, nil)) -> n 308.86/291.59 min(add(n, add(m, x))) -> if_min(le(n, m), add(n, add(m, x))) 308.86/291.59 if_min(true, add(n, add(m, x))) -> min(add(n, x)) 308.86/291.59 if_min(false, add(n, add(m, x))) -> min(add(m, x)) 308.86/291.59 rm(n, nil) -> nil 308.86/291.59 rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) 308.86/291.59 if_rm(true, n, add(m, x)) -> rm(n, x) 308.86/291.59 if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) 308.86/291.59 minsort(nil, nil) -> nil 308.86/291.59 minsort(add(n, x), y) -> if_minsort(eq(n, min(add(n, x))), add(n, x), y) 308.86/291.59 if_minsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil)) 308.86/291.59 if_minsort(false, add(n, x), y) -> minsort(x, add(n, y)) 308.86/291.59 308.86/291.59 S is empty. 308.86/291.59 Rewrite Strategy: FULL 308.86/291.59 ---------------------------------------- 308.86/291.59 308.86/291.59 (3) DecreasingLoopProof (LOWER BOUND(ID)) 308.86/291.59 The following loop(s) give(s) rise to the lower bound Omega(n^1): 308.86/291.59 308.86/291.59 The rewrite sequence 308.86/291.59 308.86/291.59 le(s(x), s(y)) ->^+ le(x, y) 308.86/291.59 308.86/291.59 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 308.86/291.59 308.86/291.59 The pumping substitution is [x / s(x), y / s(y)]. 308.86/291.59 308.86/291.59 The result substitution is [ ]. 308.86/291.59 308.86/291.59 308.86/291.59 308.86/291.59 308.86/291.59 ---------------------------------------- 308.86/291.59 308.86/291.59 (4) 308.86/291.59 Complex Obligation (BEST) 308.86/291.59 308.86/291.59 ---------------------------------------- 308.86/291.59 308.86/291.59 (5) 308.86/291.59 Obligation: 308.86/291.59 Proved the lower bound n^1 for the following obligation: 308.86/291.59 308.86/291.59 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 308.86/291.59 308.86/291.59 308.86/291.59 The TRS R consists of the following rules: 308.86/291.59 308.86/291.59 eq(0, 0) -> true 308.86/291.59 eq(0, s(x)) -> false 308.86/291.59 eq(s(x), 0) -> false 308.86/291.59 eq(s(x), s(y)) -> eq(x, y) 308.86/291.59 le(0, y) -> true 308.86/291.59 le(s(x), 0) -> false 308.86/291.59 le(s(x), s(y)) -> le(x, y) 308.86/291.59 app(nil, y) -> y 308.86/291.59 app(add(n, x), y) -> add(n, app(x, y)) 308.86/291.59 min(add(n, nil)) -> n 308.86/291.59 min(add(n, add(m, x))) -> if_min(le(n, m), add(n, add(m, x))) 308.86/291.59 if_min(true, add(n, add(m, x))) -> min(add(n, x)) 308.86/291.59 if_min(false, add(n, add(m, x))) -> min(add(m, x)) 308.86/291.59 rm(n, nil) -> nil 308.86/291.59 rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) 308.86/291.59 if_rm(true, n, add(m, x)) -> rm(n, x) 308.86/291.59 if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) 308.86/291.59 minsort(nil, nil) -> nil 308.86/291.59 minsort(add(n, x), y) -> if_minsort(eq(n, min(add(n, x))), add(n, x), y) 308.86/291.59 if_minsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil)) 308.86/291.59 if_minsort(false, add(n, x), y) -> minsort(x, add(n, y)) 308.86/291.59 308.86/291.59 S is empty. 308.86/291.59 Rewrite Strategy: FULL 308.86/291.59 ---------------------------------------- 308.86/291.59 308.86/291.59 (6) LowerBoundPropagationProof (FINISHED) 308.86/291.59 Propagated lower bound. 308.86/291.59 ---------------------------------------- 308.86/291.59 308.86/291.59 (7) 308.86/291.59 BOUNDS(n^1, INF) 308.86/291.59 308.86/291.59 ---------------------------------------- 308.86/291.59 308.86/291.59 (8) 308.86/291.59 Obligation: 308.86/291.59 Analyzing the following TRS for decreasing loops: 308.86/291.59 308.86/291.59 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 308.86/291.59 308.86/291.59 308.86/291.59 The TRS R consists of the following rules: 308.86/291.59 308.86/291.59 eq(0, 0) -> true 308.86/291.59 eq(0, s(x)) -> false 308.86/291.59 eq(s(x), 0) -> false 308.86/291.59 eq(s(x), s(y)) -> eq(x, y) 308.86/291.59 le(0, y) -> true 308.86/291.59 le(s(x), 0) -> false 308.86/291.59 le(s(x), s(y)) -> le(x, y) 308.86/291.59 app(nil, y) -> y 308.86/291.59 app(add(n, x), y) -> add(n, app(x, y)) 308.86/291.59 min(add(n, nil)) -> n 308.86/291.59 min(add(n, add(m, x))) -> if_min(le(n, m), add(n, add(m, x))) 308.86/291.59 if_min(true, add(n, add(m, x))) -> min(add(n, x)) 308.86/291.59 if_min(false, add(n, add(m, x))) -> min(add(m, x)) 308.86/291.59 rm(n, nil) -> nil 308.86/291.59 rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) 308.86/291.59 if_rm(true, n, add(m, x)) -> rm(n, x) 308.86/291.59 if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) 308.86/291.59 minsort(nil, nil) -> nil 308.86/291.59 minsort(add(n, x), y) -> if_minsort(eq(n, min(add(n, x))), add(n, x), y) 308.86/291.59 if_minsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil)) 308.86/291.59 if_minsort(false, add(n, x), y) -> minsort(x, add(n, y)) 308.86/291.59 308.86/291.59 S is empty. 308.86/291.59 Rewrite Strategy: FULL 308.86/291.62 EOF