815.54/291.48 WORST_CASE(Omega(n^1), ?) 815.54/291.49 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 815.54/291.49 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 815.54/291.49 815.54/291.49 815.54/291.49 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 815.54/291.49 815.54/291.49 (0) CpxTRS 815.54/291.49 (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 815.54/291.49 (2) CpxTRS 815.54/291.49 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 815.54/291.49 (4) typed CpxTrs 815.54/291.49 (5) OrderProof [LOWER BOUND(ID), 0 ms] 815.54/291.49 (6) typed CpxTrs 815.54/291.49 (7) RewriteLemmaProof [LOWER BOUND(ID), 289 ms] 815.54/291.49 (8) BEST 815.54/291.49 (9) proven lower bound 815.54/291.49 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 815.54/291.49 (11) BOUNDS(n^1, INF) 815.54/291.49 (12) typed CpxTrs 815.54/291.49 (13) RewriteLemmaProof [LOWER BOUND(ID), 334 ms] 815.54/291.49 (14) typed CpxTrs 815.54/291.49 815.54/291.49 815.54/291.49 ---------------------------------------- 815.54/291.49 815.54/291.49 (0) 815.54/291.49 Obligation: 815.54/291.49 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 815.54/291.49 815.54/291.49 815.54/291.49 The TRS R consists of the following rules: 815.54/291.49 815.54/291.49 minus(x, 0) -> x 815.54/291.49 minus(s(x), s(y)) -> minus(x, y) 815.54/291.49 quot(0, s(y)) -> 0 815.54/291.49 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) 815.54/291.49 plus(0, y) -> y 815.54/291.49 plus(s(x), y) -> s(plus(x, y)) 815.54/291.49 minus(minus(x, y), z) -> minus(x, plus(y, z)) 815.54/291.49 815.54/291.49 S is empty. 815.54/291.49 Rewrite Strategy: FULL 815.54/291.49 ---------------------------------------- 815.54/291.49 815.54/291.49 (1) RenamingProof (BOTH BOUNDS(ID, ID)) 815.54/291.49 Renamed function symbols to avoid clashes with predefined symbol. 815.54/291.49 ---------------------------------------- 815.54/291.49 815.54/291.49 (2) 815.54/291.49 Obligation: 815.54/291.49 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 815.54/291.49 815.54/291.49 815.54/291.49 The TRS R consists of the following rules: 815.54/291.49 815.54/291.49 minus(x, 0') -> x 815.54/291.49 minus(s(x), s(y)) -> minus(x, y) 815.54/291.49 quot(0', s(y)) -> 0' 815.54/291.49 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) 815.54/291.49 plus(0', y) -> y 815.54/291.49 plus(s(x), y) -> s(plus(x, y)) 815.54/291.49 minus(minus(x, y), z) -> minus(x, plus(y, z)) 815.54/291.49 815.54/291.49 S is empty. 815.54/291.49 Rewrite Strategy: FULL 815.54/291.49 ---------------------------------------- 815.54/291.49 815.54/291.49 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 815.54/291.49 Infered types. 815.54/291.49 ---------------------------------------- 815.54/291.49 815.54/291.49 (4) 815.54/291.49 Obligation: 815.54/291.49 TRS: 815.54/291.49 Rules: 815.54/291.49 minus(x, 0') -> x 815.54/291.49 minus(s(x), s(y)) -> minus(x, y) 815.54/291.49 quot(0', s(y)) -> 0' 815.54/291.49 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) 815.54/291.49 plus(0', y) -> y 815.54/291.49 plus(s(x), y) -> s(plus(x, y)) 815.54/291.49 minus(minus(x, y), z) -> minus(x, plus(y, z)) 815.54/291.49 815.54/291.49 Types: 815.54/291.49 minus :: 0':s -> 0':s -> 0':s 815.54/291.49 0' :: 0':s 815.54/291.49 s :: 0':s -> 0':s 815.54/291.49 quot :: 0':s -> 0':s -> 0':s 815.54/291.49 plus :: 0':s -> 0':s -> 0':s 815.54/291.49 hole_0':s1_0 :: 0':s 815.54/291.49 gen_0':s2_0 :: Nat -> 0':s 815.54/291.49 815.54/291.49 ---------------------------------------- 815.54/291.49 815.54/291.49 (5) OrderProof (LOWER BOUND(ID)) 815.54/291.49 Heuristically decided to analyse the following defined symbols: 815.54/291.49 minus, quot, plus 815.54/291.49 815.54/291.49 They will be analysed ascendingly in the following order: 815.54/291.49 minus < quot 815.54/291.49 plus < minus 815.54/291.49 815.54/291.49 ---------------------------------------- 815.54/291.49 815.54/291.49 (6) 815.54/291.49 Obligation: 815.54/291.49 TRS: 815.54/291.49 Rules: 815.54/291.49 minus(x, 0') -> x 815.54/291.49 minus(s(x), s(y)) -> minus(x, y) 815.54/291.49 quot(0', s(y)) -> 0' 815.54/291.49 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) 815.54/291.49 plus(0', y) -> y 815.54/291.49 plus(s(x), y) -> s(plus(x, y)) 815.54/291.49 minus(minus(x, y), z) -> minus(x, plus(y, z)) 815.54/291.49 815.54/291.49 Types: 815.54/291.49 minus :: 0':s -> 0':s -> 0':s 815.54/291.49 0' :: 0':s 815.54/291.49 s :: 0':s -> 0':s 815.54/291.49 quot :: 0':s -> 0':s -> 0':s 815.54/291.49 plus :: 0':s -> 0':s -> 0':s 815.54/291.49 hole_0':s1_0 :: 0':s 815.54/291.49 gen_0':s2_0 :: Nat -> 0':s 815.54/291.49 815.54/291.49 815.54/291.49 Generator Equations: 815.54/291.49 gen_0':s2_0(0) <=> 0' 815.54/291.49 gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) 815.54/291.49 815.54/291.49 815.54/291.49 The following defined symbols remain to be analysed: 815.54/291.49 plus, minus, quot 815.54/291.49 815.54/291.49 They will be analysed ascendingly in the following order: 815.54/291.49 minus < quot 815.54/291.49 plus < minus 815.54/291.49 815.54/291.49 ---------------------------------------- 815.54/291.49 815.54/291.49 (7) RewriteLemmaProof (LOWER BOUND(ID)) 815.54/291.49 Proved the following rewrite lemma: 815.54/291.49 plus(gen_0':s2_0(n4_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n4_0, b)), rt in Omega(1 + n4_0) 815.54/291.49 815.54/291.49 Induction Base: 815.54/291.49 plus(gen_0':s2_0(0), gen_0':s2_0(b)) ->_R^Omega(1) 815.54/291.49 gen_0':s2_0(b) 815.54/291.49 815.54/291.49 Induction Step: 815.54/291.49 plus(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(b)) ->_R^Omega(1) 815.54/291.49 s(plus(gen_0':s2_0(n4_0), gen_0':s2_0(b))) ->_IH 815.54/291.49 s(gen_0':s2_0(+(b, c5_0))) 815.54/291.49 815.54/291.49 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 815.54/291.49 ---------------------------------------- 815.54/291.49 815.54/291.49 (8) 815.54/291.49 Complex Obligation (BEST) 815.54/291.49 815.54/291.49 ---------------------------------------- 815.54/291.49 815.54/291.49 (9) 815.54/291.49 Obligation: 815.54/291.49 Proved the lower bound n^1 for the following obligation: 815.54/291.49 815.54/291.49 TRS: 815.54/291.49 Rules: 815.54/291.49 minus(x, 0') -> x 815.54/291.49 minus(s(x), s(y)) -> minus(x, y) 815.54/291.49 quot(0', s(y)) -> 0' 815.54/291.49 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) 815.54/291.49 plus(0', y) -> y 815.54/291.49 plus(s(x), y) -> s(plus(x, y)) 815.54/291.49 minus(minus(x, y), z) -> minus(x, plus(y, z)) 815.54/291.49 815.54/291.49 Types: 815.54/291.49 minus :: 0':s -> 0':s -> 0':s 815.54/291.49 0' :: 0':s 815.54/291.49 s :: 0':s -> 0':s 815.54/291.49 quot :: 0':s -> 0':s -> 0':s 815.54/291.49 plus :: 0':s -> 0':s -> 0':s 815.54/291.49 hole_0':s1_0 :: 0':s 815.54/291.49 gen_0':s2_0 :: Nat -> 0':s 815.54/291.49 815.54/291.49 815.54/291.49 Generator Equations: 815.54/291.49 gen_0':s2_0(0) <=> 0' 815.54/291.49 gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) 815.54/291.49 815.54/291.49 815.54/291.49 The following defined symbols remain to be analysed: 815.54/291.49 plus, minus, quot 815.54/291.49 815.54/291.49 They will be analysed ascendingly in the following order: 815.54/291.49 minus < quot 815.54/291.49 plus < minus 815.54/291.49 815.54/291.49 ---------------------------------------- 815.54/291.49 815.54/291.49 (10) LowerBoundPropagationProof (FINISHED) 815.54/291.49 Propagated lower bound. 815.54/291.49 ---------------------------------------- 815.54/291.49 815.54/291.49 (11) 815.54/291.49 BOUNDS(n^1, INF) 815.54/291.49 815.54/291.49 ---------------------------------------- 815.54/291.49 815.54/291.49 (12) 815.54/291.49 Obligation: 815.54/291.49 TRS: 815.54/291.49 Rules: 815.54/291.49 minus(x, 0') -> x 815.54/291.49 minus(s(x), s(y)) -> minus(x, y) 815.54/291.49 quot(0', s(y)) -> 0' 815.54/291.49 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) 815.54/291.49 plus(0', y) -> y 815.54/291.49 plus(s(x), y) -> s(plus(x, y)) 815.54/291.49 minus(minus(x, y), z) -> minus(x, plus(y, z)) 815.54/291.49 815.54/291.49 Types: 815.54/291.49 minus :: 0':s -> 0':s -> 0':s 815.54/291.49 0' :: 0':s 815.54/291.49 s :: 0':s -> 0':s 815.54/291.49 quot :: 0':s -> 0':s -> 0':s 815.54/291.49 plus :: 0':s -> 0':s -> 0':s 815.54/291.49 hole_0':s1_0 :: 0':s 815.54/291.49 gen_0':s2_0 :: Nat -> 0':s 815.54/291.49 815.54/291.49 815.54/291.49 Lemmas: 815.54/291.49 plus(gen_0':s2_0(n4_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n4_0, b)), rt in Omega(1 + n4_0) 815.54/291.49 815.54/291.49 815.54/291.49 Generator Equations: 815.54/291.49 gen_0':s2_0(0) <=> 0' 815.54/291.49 gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) 815.54/291.49 815.54/291.49 815.54/291.49 The following defined symbols remain to be analysed: 815.54/291.49 minus, quot 815.54/291.49 815.54/291.49 They will be analysed ascendingly in the following order: 815.54/291.49 minus < quot 815.54/291.49 815.54/291.49 ---------------------------------------- 815.54/291.49 815.54/291.49 (13) RewriteLemmaProof (LOWER BOUND(ID)) 815.54/291.49 Proved the following rewrite lemma: 815.54/291.49 minus(gen_0':s2_0(+(1, n457_0)), gen_0':s2_0(+(1, n457_0))) -> *3_0, rt in Omega(n457_0) 815.54/291.49 815.54/291.49 Induction Base: 815.54/291.49 minus(gen_0':s2_0(+(1, 0)), gen_0':s2_0(+(1, 0))) 815.54/291.49 815.54/291.49 Induction Step: 815.54/291.49 minus(gen_0':s2_0(+(1, +(n457_0, 1))), gen_0':s2_0(+(1, +(n457_0, 1)))) ->_R^Omega(1) 815.54/291.49 minus(gen_0':s2_0(+(1, n457_0)), gen_0':s2_0(+(1, n457_0))) ->_IH 815.54/291.49 *3_0 815.54/291.49 815.54/291.49 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 815.54/291.49 ---------------------------------------- 815.54/291.49 815.54/291.49 (14) 815.54/291.49 Obligation: 815.54/291.49 TRS: 815.54/291.49 Rules: 815.54/291.49 minus(x, 0') -> x 815.54/291.49 minus(s(x), s(y)) -> minus(x, y) 815.54/291.49 quot(0', s(y)) -> 0' 815.54/291.49 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) 815.54/291.49 plus(0', y) -> y 815.54/291.49 plus(s(x), y) -> s(plus(x, y)) 815.54/291.49 minus(minus(x, y), z) -> minus(x, plus(y, z)) 815.54/291.49 815.54/291.49 Types: 815.54/291.49 minus :: 0':s -> 0':s -> 0':s 815.54/291.49 0' :: 0':s 815.54/291.49 s :: 0':s -> 0':s 815.54/291.49 quot :: 0':s -> 0':s -> 0':s 815.54/291.49 plus :: 0':s -> 0':s -> 0':s 815.54/291.49 hole_0':s1_0 :: 0':s 815.54/291.49 gen_0':s2_0 :: Nat -> 0':s 815.54/291.49 815.54/291.49 815.54/291.49 Lemmas: 815.54/291.49 plus(gen_0':s2_0(n4_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n4_0, b)), rt in Omega(1 + n4_0) 815.54/291.49 minus(gen_0':s2_0(+(1, n457_0)), gen_0':s2_0(+(1, n457_0))) -> *3_0, rt in Omega(n457_0) 815.54/291.49 815.54/291.49 815.54/291.49 Generator Equations: 815.54/291.49 gen_0':s2_0(0) <=> 0' 815.54/291.49 gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) 815.54/291.49 815.54/291.49 815.54/291.49 The following defined symbols remain to be analysed: 815.54/291.49 quot 815.71/291.57 EOF