22.50/6.82 WORST_CASE(Omega(n^1), O(n^1)) 22.50/6.83 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 22.50/6.83 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 22.50/6.83 22.50/6.83 22.50/6.83 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 22.50/6.83 22.50/6.83 (0) CpxTRS 22.50/6.83 (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] 22.50/6.83 (2) CpxTRS 22.50/6.83 (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] 22.50/6.83 (4) CpxWeightedTrs 22.50/6.83 (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 22.50/6.83 (6) CpxTypedWeightedTrs 22.50/6.83 (7) CompletionProof [UPPER BOUND(ID), 0 ms] 22.50/6.83 (8) CpxTypedWeightedCompleteTrs 22.50/6.83 (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 9 ms] 22.50/6.83 (10) CpxRNTS 22.50/6.83 (11) CompleteCoflocoProof [FINISHED, 240 ms] 22.50/6.83 (12) BOUNDS(1, n^1) 22.50/6.83 (13) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 22.50/6.83 (14) CpxTRS 22.50/6.83 (15) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 22.50/6.83 (16) typed CpxTrs 22.50/6.83 (17) OrderProof [LOWER BOUND(ID), 0 ms] 22.50/6.83 (18) typed CpxTrs 22.50/6.83 (19) RewriteLemmaProof [LOWER BOUND(ID), 289 ms] 22.50/6.83 (20) BEST 22.50/6.83 (21) proven lower bound 22.50/6.83 (22) LowerBoundPropagationProof [FINISHED, 0 ms] 22.50/6.83 (23) BOUNDS(n^1, INF) 22.50/6.83 (24) typed CpxTrs 22.50/6.83 22.50/6.83 22.50/6.83 ---------------------------------------- 22.50/6.83 22.50/6.83 (0) 22.50/6.83 Obligation: 22.50/6.83 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 22.50/6.83 22.50/6.83 22.50/6.83 The TRS R consists of the following rules: 22.50/6.83 22.50/6.83 minus(x, 0) -> x 22.50/6.83 minus(s(x), s(y)) -> minus(x, y) 22.50/6.83 quot(0, s(y)) -> 0 22.50/6.83 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) 22.50/6.83 22.50/6.83 S is empty. 22.50/6.83 Rewrite Strategy: FULL 22.50/6.83 ---------------------------------------- 22.50/6.83 22.50/6.83 (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) 22.50/6.83 Converted rc-obligation to irc-obligation. 22.50/6.83 22.50/6.83 The duplicating contexts are: 22.50/6.83 quot(s(x), s([])) 22.50/6.83 22.50/6.83 22.50/6.83 The defined contexts are: 22.50/6.83 quot([], s(x1)) 22.50/6.83 minus([], x1) 22.50/6.83 22.50/6.83 22.50/6.83 [] just represents basic- or constructor-terms in the following defined contexts: 22.50/6.83 quot([], s(x1)) 22.50/6.83 22.50/6.83 22.50/6.83 As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. 22.50/6.83 ---------------------------------------- 22.50/6.83 22.50/6.83 (2) 22.50/6.83 Obligation: 22.50/6.83 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 22.50/6.83 22.50/6.83 22.50/6.83 The TRS R consists of the following rules: 22.50/6.83 22.50/6.83 minus(x, 0) -> x 22.50/6.83 minus(s(x), s(y)) -> minus(x, y) 22.50/6.83 quot(0, s(y)) -> 0 22.50/6.83 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) 22.50/6.83 22.50/6.83 S is empty. 22.50/6.83 Rewrite Strategy: INNERMOST 22.50/6.83 ---------------------------------------- 22.50/6.83 22.50/6.83 (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) 22.50/6.83 Transformed relative TRS to weighted TRS 22.50/6.83 ---------------------------------------- 22.50/6.83 22.50/6.83 (4) 22.50/6.83 Obligation: 22.50/6.83 The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). 22.50/6.83 22.50/6.83 22.50/6.83 The TRS R consists of the following rules: 22.50/6.83 22.50/6.83 minus(x, 0) -> x [1] 22.50/6.83 minus(s(x), s(y)) -> minus(x, y) [1] 22.50/6.83 quot(0, s(y)) -> 0 [1] 22.50/6.83 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) [1] 22.50/6.83 22.50/6.83 Rewrite Strategy: INNERMOST 22.50/6.83 ---------------------------------------- 22.50/6.83 22.50/6.83 (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 22.50/6.83 Infered types. 22.50/6.83 ---------------------------------------- 22.50/6.83 22.50/6.83 (6) 22.50/6.83 Obligation: 22.50/6.83 Runtime Complexity Weighted TRS with Types. 22.50/6.83 The TRS R consists of the following rules: 22.50/6.83 22.50/6.83 minus(x, 0) -> x [1] 22.50/6.83 minus(s(x), s(y)) -> minus(x, y) [1] 22.50/6.83 quot(0, s(y)) -> 0 [1] 22.50/6.83 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) [1] 22.50/6.83 22.50/6.83 The TRS has the following type information: 22.50/6.83 minus :: 0:s -> 0:s -> 0:s 22.50/6.83 0 :: 0:s 22.50/6.83 s :: 0:s -> 0:s 22.50/6.83 quot :: 0:s -> 0:s -> 0:s 22.50/6.83 22.50/6.83 Rewrite Strategy: INNERMOST 22.50/6.83 ---------------------------------------- 22.50/6.83 22.50/6.83 (7) CompletionProof (UPPER BOUND(ID)) 22.50/6.83 The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: 22.50/6.83 22.50/6.83 minus(v0, v1) -> null_minus [0] 22.50/6.83 quot(v0, v1) -> null_quot [0] 22.50/6.83 22.50/6.83 And the following fresh constants: null_minus, null_quot 22.50/6.83 22.50/6.83 ---------------------------------------- 22.50/6.83 22.50/6.83 (8) 22.50/6.83 Obligation: 22.50/6.83 Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: 22.50/6.83 22.50/6.83 Runtime Complexity Weighted TRS with Types. 22.50/6.83 The TRS R consists of the following rules: 22.50/6.83 22.50/6.83 minus(x, 0) -> x [1] 22.50/6.83 minus(s(x), s(y)) -> minus(x, y) [1] 22.50/6.83 quot(0, s(y)) -> 0 [1] 22.50/6.83 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) [1] 22.50/6.83 minus(v0, v1) -> null_minus [0] 22.50/6.83 quot(v0, v1) -> null_quot [0] 22.50/6.83 22.50/6.83 The TRS has the following type information: 22.50/6.83 minus :: 0:s:null_minus:null_quot -> 0:s:null_minus:null_quot -> 0:s:null_minus:null_quot 22.50/6.83 0 :: 0:s:null_minus:null_quot 22.50/6.83 s :: 0:s:null_minus:null_quot -> 0:s:null_minus:null_quot 22.50/6.83 quot :: 0:s:null_minus:null_quot -> 0:s:null_minus:null_quot -> 0:s:null_minus:null_quot 22.50/6.83 null_minus :: 0:s:null_minus:null_quot 22.50/6.83 null_quot :: 0:s:null_minus:null_quot 22.50/6.83 22.50/6.83 Rewrite Strategy: INNERMOST 22.50/6.83 ---------------------------------------- 22.50/6.83 22.50/6.83 (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) 22.50/6.83 Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. 22.50/6.83 The constant constructors are abstracted as follows: 22.50/6.83 22.50/6.83 0 => 0 22.50/6.83 null_minus => 0 22.50/6.83 null_quot => 0 22.50/6.83 22.50/6.83 ---------------------------------------- 22.50/6.83 22.50/6.83 (10) 22.50/6.83 Obligation: 22.50/6.83 Complexity RNTS consisting of the following rules: 22.50/6.83 22.50/6.83 minus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 22.50/6.83 minus(z, z') -{ 1 }-> minus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x 22.50/6.83 minus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 22.50/6.83 quot(z, z') -{ 1 }-> 0 :|: z' = 1 + y, y >= 0, z = 0 22.50/6.83 quot(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 22.50/6.83 quot(z, z') -{ 1 }-> 1 + quot(minus(x, y), 1 + y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x 22.50/6.83 22.50/6.83 Only complete derivations are relevant for the runtime complexity. 22.50/6.83 22.50/6.83 ---------------------------------------- 22.50/6.83 22.50/6.83 (11) CompleteCoflocoProof (FINISHED) 22.50/6.83 Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: 22.50/6.83 22.50/6.83 eq(start(V1, V),0,[minus(V1, V, Out)],[V1 >= 0,V >= 0]). 22.50/6.83 eq(start(V1, V),0,[quot(V1, V, Out)],[V1 >= 0,V >= 0]). 22.50/6.83 eq(minus(V1, V, Out),1,[],[Out = V2,V2 >= 0,V1 = V2,V = 0]). 22.50/6.83 eq(minus(V1, V, Out),1,[minus(V3, V4, Ret)],[Out = Ret,V = 1 + V4,V3 >= 0,V4 >= 0,V1 = 1 + V3]). 22.50/6.83 eq(quot(V1, V, Out),1,[],[Out = 0,V = 1 + V5,V5 >= 0,V1 = 0]). 22.50/6.83 eq(quot(V1, V, Out),1,[minus(V7, V6, Ret10),quot(Ret10, 1 + V6, Ret1)],[Out = 1 + Ret1,V = 1 + V6,V7 >= 0,V6 >= 0,V1 = 1 + V7]). 22.50/6.83 eq(minus(V1, V, Out),0,[],[Out = 0,V9 >= 0,V8 >= 0,V1 = V9,V = V8]). 22.50/6.83 eq(quot(V1, V, Out),0,[],[Out = 0,V11 >= 0,V10 >= 0,V1 = V11,V = V10]). 22.50/6.83 input_output_vars(minus(V1,V,Out),[V1,V],[Out]). 22.50/6.83 input_output_vars(quot(V1,V,Out),[V1,V],[Out]). 22.50/6.83 22.50/6.83 22.50/6.83 CoFloCo proof output: 22.50/6.83 Preprocessing Cost Relations 22.50/6.83 ===================================== 22.50/6.83 22.50/6.83 #### Computed strongly connected components 22.50/6.83 0. recursive : [minus/3] 22.50/6.83 1. recursive : [quot/3] 22.50/6.83 2. non_recursive : [start/2] 22.50/6.83 22.50/6.83 #### Obtained direct recursion through partial evaluation 22.50/6.83 0. SCC is partially evaluated into minus/3 22.50/6.83 1. SCC is partially evaluated into quot/3 22.50/6.83 2. SCC is partially evaluated into start/2 22.50/6.83 22.50/6.83 Control-Flow Refinement of Cost Relations 22.50/6.83 ===================================== 22.50/6.83 22.50/6.83 ### Specialization of cost equations minus/3 22.50/6.83 * CE 5 is refined into CE [9] 22.50/6.83 * CE 3 is refined into CE [10] 22.50/6.83 * CE 4 is refined into CE [11] 22.50/6.83 22.50/6.83 22.50/6.83 ### Cost equations --> "Loop" of minus/3 22.50/6.83 * CEs [11] --> Loop 7 22.50/6.83 * CEs [9] --> Loop 8 22.50/6.83 * CEs [10] --> Loop 9 22.50/6.83 22.50/6.83 ### Ranking functions of CR minus(V1,V,Out) 22.50/6.83 * RF of phase [7]: [V,V1] 22.50/6.83 22.50/6.83 #### Partial ranking functions of CR minus(V1,V,Out) 22.50/6.83 * Partial RF of phase [7]: 22.50/6.83 - RF of loop [7:1]: 22.50/6.83 V 22.50/6.83 V1 22.50/6.83 22.50/6.83 22.50/6.83 ### Specialization of cost equations quot/3 22.50/6.83 * CE 6 is refined into CE [12] 22.50/6.83 * CE 8 is refined into CE [13] 22.50/6.83 * CE 7 is refined into CE [14,15,16] 22.50/6.83 22.50/6.83 22.50/6.83 ### Cost equations --> "Loop" of quot/3 22.50/6.83 * CEs [16] --> Loop 10 22.50/6.83 * CEs [15] --> Loop 11 22.50/6.83 * CEs [14] --> Loop 12 22.50/6.83 * CEs [12,13] --> Loop 13 22.50/6.83 22.50/6.83 ### Ranking functions of CR quot(V1,V,Out) 22.50/6.83 * RF of phase [10]: [V1-1,V1-V+1] 22.50/6.83 * RF of phase [12]: [V1] 22.50/6.83 22.50/6.83 #### Partial ranking functions of CR quot(V1,V,Out) 22.50/6.83 * Partial RF of phase [10]: 22.50/6.83 - RF of loop [10:1]: 22.50/6.83 V1-1 22.50/6.83 V1-V+1 22.50/6.83 * Partial RF of phase [12]: 22.50/6.83 - RF of loop [12:1]: 22.50/6.83 V1 22.50/6.83 22.50/6.83 22.50/6.83 ### Specialization of cost equations start/2 22.50/6.83 * CE 1 is refined into CE [17,18,19] 22.50/6.83 * CE 2 is refined into CE [20,21,22,23,24] 22.50/6.83 22.50/6.83 22.50/6.83 ### Cost equations --> "Loop" of start/2 22.50/6.83 * CEs [20] --> Loop 14 22.50/6.83 * CEs [17,18,19,21,22,23,24] --> Loop 15 22.50/6.83 22.50/6.83 ### Ranking functions of CR start(V1,V) 22.50/6.83 22.50/6.83 #### Partial ranking functions of CR start(V1,V) 22.50/6.83 22.50/6.83 22.50/6.83 Computing Bounds 22.50/6.83 ===================================== 22.50/6.83 22.50/6.83 #### Cost of chains of minus(V1,V,Out): 22.50/6.83 * Chain [[7],9]: 1*it(7)+1 22.50/6.83 Such that:it(7) =< V 22.50/6.83 22.50/6.83 with precondition: [V1=Out+V,V>=1,V1>=V] 22.50/6.83 22.50/6.83 * Chain [[7],8]: 1*it(7)+0 22.50/6.83 Such that:it(7) =< V 22.50/6.83 22.50/6.83 with precondition: [Out=0,V1>=1,V>=1] 22.50/6.83 22.50/6.83 * Chain [9]: 1 22.50/6.83 with precondition: [V=0,V1=Out,V1>=0] 22.50/6.83 22.50/6.83 * Chain [8]: 0 22.50/6.83 with precondition: [Out=0,V1>=0,V>=0] 22.50/6.83 22.50/6.83 22.50/6.83 #### Cost of chains of quot(V1,V,Out): 22.50/6.83 * Chain [[12],13]: 2*it(12)+1 22.50/6.83 Such that:it(12) =< Out 22.50/6.83 22.50/6.83 with precondition: [V=1,Out>=1,V1>=Out] 22.50/6.83 22.50/6.83 * Chain [[12],11,13]: 2*it(12)+1*s(2)+2 22.50/6.83 Such that:s(2) =< 1 22.50/6.83 it(12) =< Out 22.50/6.83 22.50/6.83 with precondition: [V=1,Out>=2,V1>=Out] 22.50/6.83 22.50/6.83 * Chain [[10],13]: 2*it(10)+1*s(5)+1 22.50/6.83 Such that:it(10) =< V1-V+1 22.50/6.83 aux(3) =< V1 22.50/6.83 it(10) =< aux(3) 22.50/6.83 s(5) =< aux(3) 22.50/6.83 22.50/6.83 with precondition: [V>=2,Out>=1,V1+2>=2*Out+V] 22.50/6.83 22.50/6.83 * Chain [[10],11,13]: 2*it(10)+1*s(2)+1*s(5)+2 22.50/6.83 Such that:it(10) =< V1-V+1 22.50/6.83 s(2) =< V 22.50/6.83 aux(4) =< V1 22.50/6.83 it(10) =< aux(4) 22.50/6.83 s(5) =< aux(4) 22.50/6.83 22.50/6.83 with precondition: [V>=2,Out>=2,V1+3>=2*Out+V] 22.50/6.83 22.50/6.83 * Chain [13]: 1 22.50/6.83 with precondition: [Out=0,V1>=0,V>=0] 22.50/6.83 22.50/6.83 * Chain [11,13]: 1*s(2)+2 22.50/6.83 Such that:s(2) =< V 22.50/6.83 22.50/6.83 with precondition: [Out=1,V1>=1,V>=1] 22.50/6.83 22.50/6.83 22.50/6.83 #### Cost of chains of start(V1,V): 22.50/6.83 * Chain [15]: 4*s(9)+4*s(12)+2*s(14)+2 22.50/6.83 Such that:aux(6) =< V1 22.50/6.83 aux(7) =< V1-V+1 22.50/6.83 aux(8) =< V 22.50/6.83 s(12) =< aux(7) 22.50/6.83 s(9) =< aux(8) 22.50/6.83 s(12) =< aux(6) 22.50/6.83 s(14) =< aux(6) 22.50/6.83 22.50/6.83 with precondition: [V1>=0,V>=0] 22.50/6.83 22.50/6.83 * Chain [14]: 1*s(19)+4*s(21)+2 22.50/6.83 Such that:s(19) =< 1 22.50/6.83 s(20) =< V1 22.50/6.83 s(21) =< s(20) 22.50/6.83 22.50/6.83 with precondition: [V=1,V1>=1] 22.50/6.83 22.50/6.83 22.50/6.83 Closed-form bounds of start(V1,V): 22.50/6.83 ------------------------------------- 22.50/6.83 * Chain [15] with precondition: [V1>=0,V>=0] 22.50/6.83 - Upper bound: 2*V1+4*V+2+nat(V1-V+1)*4 22.50/6.83 - Complexity: n 22.50/6.83 * Chain [14] with precondition: [V=1,V1>=1] 22.50/6.83 - Upper bound: 4*V1+3 22.50/6.83 - Complexity: n 22.50/6.83 22.50/6.83 ### Maximum cost of start(V1,V): 2*V1+2+max([2*V1+1,nat(V1-V+1)*4+4*V]) 22.50/6.83 Asymptotic class: n 22.50/6.83 * Total analysis performed in 165 ms. 22.50/6.83 22.50/6.83 22.50/6.83 ---------------------------------------- 22.50/6.83 22.50/6.83 (12) 22.50/6.83 BOUNDS(1, n^1) 22.50/6.83 22.50/6.83 ---------------------------------------- 22.50/6.83 22.50/6.83 (13) RenamingProof (BOTH BOUNDS(ID, ID)) 22.50/6.83 Renamed function symbols to avoid clashes with predefined symbol. 22.50/6.83 ---------------------------------------- 22.50/6.83 22.50/6.83 (14) 22.50/6.83 Obligation: 22.50/6.83 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 22.50/6.83 22.50/6.83 22.50/6.83 The TRS R consists of the following rules: 22.50/6.83 22.50/6.83 minus(x, 0') -> x 22.50/6.83 minus(s(x), s(y)) -> minus(x, y) 22.50/6.83 quot(0', s(y)) -> 0' 22.50/6.83 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) 22.50/6.83 22.50/6.83 S is empty. 22.50/6.83 Rewrite Strategy: FULL 22.50/6.83 ---------------------------------------- 22.50/6.83 22.50/6.83 (15) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 22.50/6.83 Infered types. 22.50/6.83 ---------------------------------------- 22.50/6.83 22.50/6.83 (16) 22.50/6.83 Obligation: 22.50/6.83 TRS: 22.50/6.83 Rules: 22.50/6.83 minus(x, 0') -> x 22.50/6.83 minus(s(x), s(y)) -> minus(x, y) 22.50/6.83 quot(0', s(y)) -> 0' 22.50/6.83 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) 22.50/6.83 22.50/6.83 Types: 22.50/6.83 minus :: 0':s -> 0':s -> 0':s 22.50/6.83 0' :: 0':s 22.50/6.83 s :: 0':s -> 0':s 22.50/6.83 quot :: 0':s -> 0':s -> 0':s 22.50/6.83 hole_0':s1_0 :: 0':s 22.50/6.83 gen_0':s2_0 :: Nat -> 0':s 22.50/6.83 22.50/6.83 ---------------------------------------- 22.50/6.83 22.50/6.83 (17) OrderProof (LOWER BOUND(ID)) 22.50/6.83 Heuristically decided to analyse the following defined symbols: 22.50/6.83 minus, quot 22.50/6.84 22.50/6.84 They will be analysed ascendingly in the following order: 22.50/6.84 minus < quot 22.50/6.84 22.50/6.84 ---------------------------------------- 22.50/6.84 22.50/6.84 (18) 22.50/6.84 Obligation: 22.50/6.84 TRS: 22.50/6.84 Rules: 22.50/6.84 minus(x, 0') -> x 22.50/6.84 minus(s(x), s(y)) -> minus(x, y) 22.50/6.84 quot(0', s(y)) -> 0' 22.50/6.84 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) 22.50/6.84 22.50/6.84 Types: 22.50/6.84 minus :: 0':s -> 0':s -> 0':s 22.50/6.84 0' :: 0':s 22.50/6.84 s :: 0':s -> 0':s 22.50/6.84 quot :: 0':s -> 0':s -> 0':s 22.50/6.84 hole_0':s1_0 :: 0':s 22.50/6.84 gen_0':s2_0 :: Nat -> 0':s 22.50/6.84 22.50/6.84 22.50/6.84 Generator Equations: 22.50/6.84 gen_0':s2_0(0) <=> 0' 22.50/6.84 gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) 22.50/6.84 22.50/6.84 22.50/6.84 The following defined symbols remain to be analysed: 22.50/6.84 minus, quot 22.50/6.84 22.50/6.84 They will be analysed ascendingly in the following order: 22.50/6.84 minus < quot 22.50/6.84 22.50/6.84 ---------------------------------------- 22.50/6.84 22.50/6.84 (19) RewriteLemmaProof (LOWER BOUND(ID)) 22.50/6.84 Proved the following rewrite lemma: 22.50/6.84 minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(0), rt in Omega(1 + n4_0) 22.50/6.84 22.50/6.84 Induction Base: 22.50/6.84 minus(gen_0':s2_0(0), gen_0':s2_0(0)) ->_R^Omega(1) 22.50/6.84 gen_0':s2_0(0) 22.50/6.84 22.50/6.84 Induction Step: 22.50/6.84 minus(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(+(n4_0, 1))) ->_R^Omega(1) 22.50/6.84 minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) ->_IH 22.50/6.84 gen_0':s2_0(0) 22.50/6.84 22.50/6.84 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 22.50/6.84 ---------------------------------------- 22.50/6.84 22.50/6.84 (20) 22.50/6.84 Complex Obligation (BEST) 22.50/6.84 22.50/6.84 ---------------------------------------- 22.50/6.84 22.50/6.84 (21) 22.50/6.84 Obligation: 22.50/6.84 Proved the lower bound n^1 for the following obligation: 22.50/6.84 22.50/6.84 TRS: 22.50/6.84 Rules: 22.50/6.84 minus(x, 0') -> x 22.50/6.84 minus(s(x), s(y)) -> minus(x, y) 22.50/6.84 quot(0', s(y)) -> 0' 22.50/6.84 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) 22.50/6.84 22.50/6.84 Types: 22.50/6.84 minus :: 0':s -> 0':s -> 0':s 22.50/6.84 0' :: 0':s 22.50/6.84 s :: 0':s -> 0':s 22.50/6.84 quot :: 0':s -> 0':s -> 0':s 22.50/6.84 hole_0':s1_0 :: 0':s 22.50/6.84 gen_0':s2_0 :: Nat -> 0':s 22.50/6.84 22.50/6.84 22.50/6.84 Generator Equations: 22.50/6.84 gen_0':s2_0(0) <=> 0' 22.50/6.84 gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) 22.50/6.84 22.50/6.84 22.50/6.84 The following defined symbols remain to be analysed: 22.50/6.84 minus, quot 22.50/6.84 22.50/6.84 They will be analysed ascendingly in the following order: 22.50/6.84 minus < quot 22.50/6.84 22.50/6.84 ---------------------------------------- 22.50/6.84 22.50/6.84 (22) LowerBoundPropagationProof (FINISHED) 22.50/6.84 Propagated lower bound. 22.50/6.84 ---------------------------------------- 22.50/6.84 22.50/6.84 (23) 22.50/6.84 BOUNDS(n^1, INF) 22.50/6.84 22.50/6.84 ---------------------------------------- 22.50/6.84 22.50/6.84 (24) 22.50/6.84 Obligation: 22.50/6.84 TRS: 22.50/6.84 Rules: 22.50/6.84 minus(x, 0') -> x 22.50/6.84 minus(s(x), s(y)) -> minus(x, y) 22.50/6.84 quot(0', s(y)) -> 0' 22.50/6.84 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) 22.50/6.84 22.50/6.84 Types: 22.50/6.84 minus :: 0':s -> 0':s -> 0':s 22.50/6.84 0' :: 0':s 22.50/6.84 s :: 0':s -> 0':s 22.50/6.84 quot :: 0':s -> 0':s -> 0':s 22.50/6.84 hole_0':s1_0 :: 0':s 22.50/6.84 gen_0':s2_0 :: Nat -> 0':s 22.50/6.84 22.50/6.84 22.50/6.84 Lemmas: 22.50/6.84 minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(0), rt in Omega(1 + n4_0) 22.50/6.84 22.50/6.84 22.50/6.84 Generator Equations: 22.50/6.84 gen_0':s2_0(0) <=> 0' 22.50/6.84 gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) 22.50/6.84 22.50/6.84 22.50/6.84 The following defined symbols remain to be analysed: 22.50/6.84 quot 22.50/6.87 EOF