3.04/1.50 WORST_CASE(NON_POLY, ?) 3.04/1.51 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.04/1.51 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.04/1.51 3.04/1.51 3.04/1.51 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.04/1.51 3.04/1.51 (0) CpxTRS 3.04/1.51 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.04/1.51 (2) TRS for Loop Detection 3.04/1.51 (3) DecreasingLoopProof [FINISHED, 0 ms] 3.04/1.51 (4) BOUNDS(EXP, INF) 3.04/1.51 3.04/1.51 3.04/1.51 ---------------------------------------- 3.04/1.51 3.04/1.51 (0) 3.04/1.51 Obligation: 3.04/1.51 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.04/1.51 3.04/1.51 3.04/1.51 The TRS R consists of the following rules: 3.04/1.51 3.04/1.51 f(g(x)) -> f(a(g(g(f(x))), g(f(x)))) 3.04/1.51 3.04/1.51 S is empty. 3.04/1.51 Rewrite Strategy: FULL 3.04/1.51 ---------------------------------------- 3.04/1.51 3.04/1.51 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.04/1.51 Transformed a relative TRS into a decreasing-loop problem. 3.04/1.51 ---------------------------------------- 3.04/1.51 3.04/1.51 (2) 3.04/1.51 Obligation: 3.04/1.51 Analyzing the following TRS for decreasing loops: 3.04/1.51 3.04/1.51 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.04/1.51 3.04/1.51 3.04/1.51 The TRS R consists of the following rules: 3.04/1.51 3.04/1.51 f(g(x)) -> f(a(g(g(f(x))), g(f(x)))) 3.04/1.51 3.04/1.51 S is empty. 3.04/1.51 Rewrite Strategy: FULL 3.04/1.51 ---------------------------------------- 3.04/1.51 3.04/1.51 (3) DecreasingLoopProof (FINISHED) 3.04/1.51 The following loop(s) give(s) rise to the lower bound EXP: 3.04/1.51 3.04/1.51 The rewrite sequence 3.04/1.51 3.04/1.51 f(g(x)) ->^+ f(a(g(g(f(x))), g(f(x)))) 3.04/1.51 3.04/1.51 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0,0,0]. 3.04/1.51 3.04/1.51 The pumping substitution is [x / g(x)]. 3.04/1.51 3.04/1.51 The result substitution is [ ]. 3.04/1.51 3.04/1.51 3.04/1.51 3.04/1.51 The rewrite sequence 3.04/1.51 3.04/1.51 f(g(x)) ->^+ f(a(g(g(f(x))), g(f(x)))) 3.04/1.51 3.04/1.51 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,1,0]. 3.04/1.51 3.04/1.51 The pumping substitution is [x / g(x)]. 3.04/1.51 3.04/1.51 The result substitution is [ ]. 3.04/1.51 3.04/1.51 3.04/1.51 3.04/1.51 3.04/1.51 ---------------------------------------- 3.04/1.51 3.04/1.51 (4) 3.04/1.51 BOUNDS(EXP, INF) 3.21/1.55 EOF