304.13/291.47 WORST_CASE(Omega(n^1), ?) 304.13/291.48 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 304.13/291.48 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 304.13/291.48 304.13/291.48 304.13/291.48 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 304.13/291.48 304.13/291.48 (0) CpxTRS 304.13/291.48 (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 304.13/291.48 (2) CpxTRS 304.13/291.48 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 304.13/291.48 (4) typed CpxTrs 304.13/291.48 (5) OrderProof [LOWER BOUND(ID), 0 ms] 304.13/291.48 (6) typed CpxTrs 304.13/291.48 (7) RewriteLemmaProof [LOWER BOUND(ID), 272 ms] 304.13/291.48 (8) BEST 304.13/291.48 (9) proven lower bound 304.13/291.48 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 304.13/291.48 (11) BOUNDS(n^1, INF) 304.13/291.48 (12) typed CpxTrs 304.13/291.48 304.13/291.48 304.13/291.48 ---------------------------------------- 304.13/291.48 304.13/291.48 (0) 304.13/291.48 Obligation: 304.13/291.48 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 304.13/291.48 304.13/291.48 304.13/291.48 The TRS R consists of the following rules: 304.13/291.48 304.13/291.48 le(0, y) -> true 304.13/291.48 le(s(x), 0) -> false 304.13/291.48 le(s(x), s(y)) -> le(x, y) 304.13/291.48 minus(0, y) -> 0 304.13/291.48 minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) 304.13/291.48 if_minus(true, s(x), y) -> 0 304.13/291.48 if_minus(false, s(x), y) -> s(minus(x, y)) 304.13/291.48 quot(0, s(y)) -> 0 304.13/291.48 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) 304.13/291.48 log(s(0)) -> 0 304.13/291.48 log(s(s(x))) -> s(log(s(quot(x, s(s(0)))))) 304.13/291.48 304.13/291.48 S is empty. 304.13/291.48 Rewrite Strategy: FULL 304.13/291.48 ---------------------------------------- 304.13/291.48 304.13/291.48 (1) RenamingProof (BOTH BOUNDS(ID, ID)) 304.13/291.48 Renamed function symbols to avoid clashes with predefined symbol. 304.13/291.48 ---------------------------------------- 304.13/291.48 304.13/291.48 (2) 304.13/291.48 Obligation: 304.13/291.48 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 304.13/291.48 304.13/291.48 304.13/291.48 The TRS R consists of the following rules: 304.13/291.48 304.13/291.48 le(0', y) -> true 304.13/291.48 le(s(x), 0') -> false 304.13/291.48 le(s(x), s(y)) -> le(x, y) 304.13/291.48 minus(0', y) -> 0' 304.13/291.48 minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) 304.13/291.48 if_minus(true, s(x), y) -> 0' 304.13/291.48 if_minus(false, s(x), y) -> s(minus(x, y)) 304.13/291.48 quot(0', s(y)) -> 0' 304.13/291.48 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) 304.13/291.48 log(s(0')) -> 0' 304.13/291.48 log(s(s(x))) -> s(log(s(quot(x, s(s(0')))))) 304.13/291.48 304.13/291.48 S is empty. 304.13/291.48 Rewrite Strategy: FULL 304.13/291.48 ---------------------------------------- 304.13/291.48 304.13/291.48 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 304.13/291.48 Infered types. 304.13/291.48 ---------------------------------------- 304.13/291.48 304.13/291.48 (4) 304.13/291.48 Obligation: 304.13/291.48 TRS: 304.13/291.48 Rules: 304.13/291.48 le(0', y) -> true 304.13/291.48 le(s(x), 0') -> false 304.13/291.48 le(s(x), s(y)) -> le(x, y) 304.13/291.48 minus(0', y) -> 0' 304.13/291.48 minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) 304.13/291.48 if_minus(true, s(x), y) -> 0' 304.13/291.48 if_minus(false, s(x), y) -> s(minus(x, y)) 304.13/291.48 quot(0', s(y)) -> 0' 304.13/291.48 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) 304.13/291.48 log(s(0')) -> 0' 304.13/291.48 log(s(s(x))) -> s(log(s(quot(x, s(s(0')))))) 304.13/291.48 304.13/291.48 Types: 304.13/291.48 le :: 0':s -> 0':s -> true:false 304.13/291.48 0' :: 0':s 304.13/291.48 true :: true:false 304.13/291.48 s :: 0':s -> 0':s 304.13/291.48 false :: true:false 304.13/291.48 minus :: 0':s -> 0':s -> 0':s 304.13/291.48 if_minus :: true:false -> 0':s -> 0':s -> 0':s 304.13/291.48 quot :: 0':s -> 0':s -> 0':s 304.13/291.48 log :: 0':s -> 0':s 304.13/291.48 hole_true:false1_0 :: true:false 304.13/291.48 hole_0':s2_0 :: 0':s 304.13/291.48 gen_0':s3_0 :: Nat -> 0':s 304.13/291.48 304.13/291.48 ---------------------------------------- 304.13/291.48 304.13/291.48 (5) OrderProof (LOWER BOUND(ID)) 304.13/291.48 Heuristically decided to analyse the following defined symbols: 304.13/291.48 le, minus, quot, log 304.13/291.48 304.13/291.48 They will be analysed ascendingly in the following order: 304.13/291.48 le < minus 304.13/291.48 minus < quot 304.13/291.48 quot < log 304.13/291.48 304.13/291.48 ---------------------------------------- 304.13/291.48 304.13/291.48 (6) 304.13/291.48 Obligation: 304.13/291.48 TRS: 304.13/291.48 Rules: 304.13/291.48 le(0', y) -> true 304.13/291.48 le(s(x), 0') -> false 304.13/291.48 le(s(x), s(y)) -> le(x, y) 304.13/291.48 minus(0', y) -> 0' 304.13/291.48 minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) 304.13/291.48 if_minus(true, s(x), y) -> 0' 304.13/291.48 if_minus(false, s(x), y) -> s(minus(x, y)) 304.13/291.48 quot(0', s(y)) -> 0' 304.13/291.48 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) 304.13/291.48 log(s(0')) -> 0' 304.13/291.48 log(s(s(x))) -> s(log(s(quot(x, s(s(0')))))) 304.13/291.48 304.13/291.48 Types: 304.13/291.48 le :: 0':s -> 0':s -> true:false 304.13/291.48 0' :: 0':s 304.13/291.48 true :: true:false 304.13/291.48 s :: 0':s -> 0':s 304.13/291.48 false :: true:false 304.13/291.48 minus :: 0':s -> 0':s -> 0':s 304.13/291.48 if_minus :: true:false -> 0':s -> 0':s -> 0':s 304.13/291.48 quot :: 0':s -> 0':s -> 0':s 304.13/291.48 log :: 0':s -> 0':s 304.13/291.48 hole_true:false1_0 :: true:false 304.13/291.48 hole_0':s2_0 :: 0':s 304.13/291.48 gen_0':s3_0 :: Nat -> 0':s 304.13/291.48 304.13/291.48 304.13/291.48 Generator Equations: 304.13/291.48 gen_0':s3_0(0) <=> 0' 304.13/291.48 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 304.13/291.48 304.13/291.48 304.13/291.48 The following defined symbols remain to be analysed: 304.13/291.48 le, minus, quot, log 304.13/291.48 304.13/291.48 They will be analysed ascendingly in the following order: 304.13/291.48 le < minus 304.13/291.48 minus < quot 304.13/291.48 quot < log 304.13/291.48 304.13/291.48 ---------------------------------------- 304.13/291.48 304.13/291.48 (7) RewriteLemmaProof (LOWER BOUND(ID)) 304.13/291.48 Proved the following rewrite lemma: 304.13/291.48 le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) 304.13/291.48 304.13/291.48 Induction Base: 304.13/291.48 le(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) 304.13/291.48 true 304.13/291.48 304.13/291.48 Induction Step: 304.13/291.48 le(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) 304.13/291.48 le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) ->_IH 304.13/291.48 true 304.13/291.48 304.13/291.48 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 304.13/291.48 ---------------------------------------- 304.13/291.48 304.13/291.48 (8) 304.13/291.48 Complex Obligation (BEST) 304.13/291.48 304.13/291.48 ---------------------------------------- 304.13/291.48 304.13/291.48 (9) 304.13/291.48 Obligation: 304.13/291.48 Proved the lower bound n^1 for the following obligation: 304.13/291.48 304.13/291.48 TRS: 304.13/291.48 Rules: 304.13/291.48 le(0', y) -> true 304.13/291.48 le(s(x), 0') -> false 304.13/291.48 le(s(x), s(y)) -> le(x, y) 304.13/291.48 minus(0', y) -> 0' 304.13/291.48 minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) 304.13/291.48 if_minus(true, s(x), y) -> 0' 304.13/291.48 if_minus(false, s(x), y) -> s(minus(x, y)) 304.13/291.48 quot(0', s(y)) -> 0' 304.13/291.48 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) 304.13/291.48 log(s(0')) -> 0' 304.13/291.48 log(s(s(x))) -> s(log(s(quot(x, s(s(0')))))) 304.13/291.48 304.13/291.48 Types: 304.13/291.48 le :: 0':s -> 0':s -> true:false 304.13/291.48 0' :: 0':s 304.13/291.48 true :: true:false 304.13/291.48 s :: 0':s -> 0':s 304.13/291.48 false :: true:false 304.13/291.48 minus :: 0':s -> 0':s -> 0':s 304.13/291.48 if_minus :: true:false -> 0':s -> 0':s -> 0':s 304.13/291.48 quot :: 0':s -> 0':s -> 0':s 304.13/291.48 log :: 0':s -> 0':s 304.13/291.48 hole_true:false1_0 :: true:false 304.13/291.48 hole_0':s2_0 :: 0':s 304.13/291.48 gen_0':s3_0 :: Nat -> 0':s 304.13/291.48 304.13/291.48 304.13/291.48 Generator Equations: 304.13/291.48 gen_0':s3_0(0) <=> 0' 304.13/291.48 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 304.13/291.48 304.13/291.48 304.13/291.48 The following defined symbols remain to be analysed: 304.13/291.48 le, minus, quot, log 304.13/291.48 304.13/291.48 They will be analysed ascendingly in the following order: 304.13/291.48 le < minus 304.13/291.48 minus < quot 304.13/291.48 quot < log 304.13/291.48 304.13/291.48 ---------------------------------------- 304.13/291.48 304.13/291.48 (10) LowerBoundPropagationProof (FINISHED) 304.13/291.48 Propagated lower bound. 304.13/291.48 ---------------------------------------- 304.13/291.48 304.13/291.48 (11) 304.13/291.48 BOUNDS(n^1, INF) 304.13/291.48 304.13/291.48 ---------------------------------------- 304.13/291.48 304.13/291.48 (12) 304.13/291.48 Obligation: 304.13/291.48 TRS: 304.13/291.48 Rules: 304.13/291.48 le(0', y) -> true 304.13/291.48 le(s(x), 0') -> false 304.13/291.48 le(s(x), s(y)) -> le(x, y) 304.13/291.48 minus(0', y) -> 0' 304.13/291.48 minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) 304.13/291.48 if_minus(true, s(x), y) -> 0' 304.13/291.48 if_minus(false, s(x), y) -> s(minus(x, y)) 304.13/291.48 quot(0', s(y)) -> 0' 304.13/291.48 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) 304.13/291.48 log(s(0')) -> 0' 304.13/291.48 log(s(s(x))) -> s(log(s(quot(x, s(s(0')))))) 304.13/291.48 304.13/291.48 Types: 304.13/291.48 le :: 0':s -> 0':s -> true:false 304.13/291.48 0' :: 0':s 304.13/291.48 true :: true:false 304.13/291.48 s :: 0':s -> 0':s 304.13/291.48 false :: true:false 304.13/291.48 minus :: 0':s -> 0':s -> 0':s 304.13/291.48 if_minus :: true:false -> 0':s -> 0':s -> 0':s 304.13/291.48 quot :: 0':s -> 0':s -> 0':s 304.13/291.48 log :: 0':s -> 0':s 304.13/291.48 hole_true:false1_0 :: true:false 304.13/291.48 hole_0':s2_0 :: 0':s 304.13/291.48 gen_0':s3_0 :: Nat -> 0':s 304.13/291.48 304.13/291.48 304.13/291.48 Lemmas: 304.13/291.48 le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) 304.13/291.48 304.13/291.48 304.13/291.48 Generator Equations: 304.13/291.48 gen_0':s3_0(0) <=> 0' 304.13/291.48 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 304.13/291.48 304.13/291.48 304.13/291.48 The following defined symbols remain to be analysed: 304.13/291.48 minus, quot, log 304.13/291.48 304.13/291.48 They will be analysed ascendingly in the following order: 304.13/291.48 minus < quot 304.13/291.48 quot < log 304.13/291.52 EOF