310.94/291.55 WORST_CASE(Omega(n^1), ?) 310.98/291.56 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 310.98/291.56 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 310.98/291.56 310.98/291.56 310.98/291.56 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 310.98/291.56 310.98/291.56 (0) CpxTRS 310.98/291.56 (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 310.98/291.56 (2) CpxTRS 310.98/291.56 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 310.98/291.56 (4) typed CpxTrs 310.98/291.56 (5) OrderProof [LOWER BOUND(ID), 0 ms] 310.98/291.56 (6) typed CpxTrs 310.98/291.56 (7) RewriteLemmaProof [LOWER BOUND(ID), 264 ms] 310.98/291.56 (8) BEST 310.98/291.56 (9) proven lower bound 310.98/291.56 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 310.98/291.56 (11) BOUNDS(n^1, INF) 310.98/291.56 (12) typed CpxTrs 310.98/291.56 (13) RewriteLemmaProof [LOWER BOUND(ID), 50 ms] 310.98/291.56 (14) typed CpxTrs 310.98/291.56 (15) RewriteLemmaProof [LOWER BOUND(ID), 53 ms] 310.98/291.56 (16) typed CpxTrs 310.98/291.56 310.98/291.56 310.98/291.56 ---------------------------------------- 310.98/291.56 310.98/291.56 (0) 310.98/291.56 Obligation: 310.98/291.56 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 310.98/291.56 310.98/291.56 310.98/291.56 The TRS R consists of the following rules: 310.98/291.56 310.98/291.56 le(0, y) -> true 310.98/291.56 le(s(x), 0) -> false 310.98/291.56 le(s(x), s(y)) -> le(x, y) 310.98/291.56 minus(x, 0) -> x 310.98/291.56 minus(0, s(y)) -> 0 310.98/291.56 minus(s(x), s(y)) -> minus(x, y) 310.98/291.56 plus(x, 0) -> x 310.98/291.56 plus(x, s(y)) -> s(plus(x, y)) 310.98/291.56 mod(s(x), 0) -> 0 310.98/291.56 mod(x, s(y)) -> help(x, s(y), 0) 310.98/291.56 help(x, s(y), c) -> if(le(c, x), x, s(y), c) 310.98/291.56 if(true, x, s(y), c) -> help(x, s(y), plus(c, s(y))) 310.98/291.56 if(false, x, s(y), c) -> minus(x, minus(c, s(y))) 310.98/291.56 310.98/291.56 S is empty. 310.98/291.56 Rewrite Strategy: FULL 310.98/291.56 ---------------------------------------- 310.98/291.56 310.98/291.56 (1) RenamingProof (BOTH BOUNDS(ID, ID)) 310.98/291.56 Renamed function symbols to avoid clashes with predefined symbol. 310.98/291.56 ---------------------------------------- 310.98/291.56 310.98/291.56 (2) 310.98/291.56 Obligation: 310.98/291.56 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 310.98/291.56 310.98/291.56 310.98/291.56 The TRS R consists of the following rules: 310.98/291.56 310.98/291.56 le(0', y) -> true 310.98/291.56 le(s(x), 0') -> false 310.98/291.56 le(s(x), s(y)) -> le(x, y) 310.98/291.56 minus(x, 0') -> x 310.98/291.56 minus(0', s(y)) -> 0' 310.98/291.56 minus(s(x), s(y)) -> minus(x, y) 310.98/291.56 plus(x, 0') -> x 310.98/291.56 plus(x, s(y)) -> s(plus(x, y)) 310.98/291.56 mod(s(x), 0') -> 0' 310.98/291.56 mod(x, s(y)) -> help(x, s(y), 0') 310.98/291.56 help(x, s(y), c) -> if(le(c, x), x, s(y), c) 310.98/291.56 if(true, x, s(y), c) -> help(x, s(y), plus(c, s(y))) 310.98/291.56 if(false, x, s(y), c) -> minus(x, minus(c, s(y))) 310.98/291.56 310.98/291.56 S is empty. 310.98/291.56 Rewrite Strategy: FULL 310.98/291.56 ---------------------------------------- 310.98/291.56 310.98/291.56 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 310.98/291.56 Infered types. 310.98/291.56 ---------------------------------------- 310.98/291.56 310.98/291.56 (4) 310.98/291.56 Obligation: 310.98/291.56 TRS: 310.98/291.56 Rules: 310.98/291.56 le(0', y) -> true 310.98/291.56 le(s(x), 0') -> false 310.98/291.56 le(s(x), s(y)) -> le(x, y) 310.98/291.56 minus(x, 0') -> x 310.98/291.56 minus(0', s(y)) -> 0' 310.98/291.56 minus(s(x), s(y)) -> minus(x, y) 310.98/291.56 plus(x, 0') -> x 310.98/291.56 plus(x, s(y)) -> s(plus(x, y)) 310.98/291.56 mod(s(x), 0') -> 0' 310.98/291.56 mod(x, s(y)) -> help(x, s(y), 0') 310.98/291.56 help(x, s(y), c) -> if(le(c, x), x, s(y), c) 310.98/291.56 if(true, x, s(y), c) -> help(x, s(y), plus(c, s(y))) 310.98/291.56 if(false, x, s(y), c) -> minus(x, minus(c, s(y))) 310.98/291.56 310.98/291.56 Types: 310.98/291.56 le :: 0':s -> 0':s -> true:false 310.98/291.56 0' :: 0':s 310.98/291.56 true :: true:false 310.98/291.56 s :: 0':s -> 0':s 310.98/291.56 false :: true:false 310.98/291.56 minus :: 0':s -> 0':s -> 0':s 310.98/291.56 plus :: 0':s -> 0':s -> 0':s 310.98/291.56 mod :: 0':s -> 0':s -> 0':s 310.98/291.56 help :: 0':s -> 0':s -> 0':s -> 0':s 310.98/291.56 if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s 310.98/291.56 hole_true:false1_0 :: true:false 310.98/291.56 hole_0':s2_0 :: 0':s 310.98/291.56 gen_0':s3_0 :: Nat -> 0':s 310.98/291.56 310.98/291.56 ---------------------------------------- 310.98/291.56 310.98/291.56 (5) OrderProof (LOWER BOUND(ID)) 310.98/291.56 Heuristically decided to analyse the following defined symbols: 310.98/291.56 le, minus, plus, help 310.98/291.56 310.98/291.56 They will be analysed ascendingly in the following order: 310.98/291.56 le < help 310.98/291.56 minus < help 310.98/291.56 plus < help 310.98/291.56 310.98/291.56 ---------------------------------------- 310.98/291.56 310.98/291.56 (6) 310.98/291.56 Obligation: 310.98/291.56 TRS: 310.98/291.56 Rules: 310.98/291.56 le(0', y) -> true 310.98/291.56 le(s(x), 0') -> false 310.98/291.56 le(s(x), s(y)) -> le(x, y) 310.98/291.56 minus(x, 0') -> x 310.98/291.56 minus(0', s(y)) -> 0' 310.98/291.56 minus(s(x), s(y)) -> minus(x, y) 310.98/291.56 plus(x, 0') -> x 310.98/291.56 plus(x, s(y)) -> s(plus(x, y)) 310.98/291.56 mod(s(x), 0') -> 0' 310.98/291.56 mod(x, s(y)) -> help(x, s(y), 0') 310.98/291.56 help(x, s(y), c) -> if(le(c, x), x, s(y), c) 310.98/291.56 if(true, x, s(y), c) -> help(x, s(y), plus(c, s(y))) 310.98/291.56 if(false, x, s(y), c) -> minus(x, minus(c, s(y))) 310.98/291.56 310.98/291.56 Types: 310.98/291.56 le :: 0':s -> 0':s -> true:false 310.98/291.56 0' :: 0':s 310.98/291.56 true :: true:false 310.98/291.56 s :: 0':s -> 0':s 310.98/291.56 false :: true:false 310.98/291.56 minus :: 0':s -> 0':s -> 0':s 310.98/291.56 plus :: 0':s -> 0':s -> 0':s 310.98/291.56 mod :: 0':s -> 0':s -> 0':s 310.98/291.56 help :: 0':s -> 0':s -> 0':s -> 0':s 310.98/291.56 if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s 310.98/291.56 hole_true:false1_0 :: true:false 310.98/291.56 hole_0':s2_0 :: 0':s 310.98/291.56 gen_0':s3_0 :: Nat -> 0':s 310.98/291.56 310.98/291.56 310.98/291.56 Generator Equations: 310.98/291.56 gen_0':s3_0(0) <=> 0' 310.98/291.56 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 310.98/291.56 310.98/291.56 310.98/291.56 The following defined symbols remain to be analysed: 310.98/291.56 le, minus, plus, help 310.98/291.56 310.98/291.56 They will be analysed ascendingly in the following order: 310.98/291.56 le < help 310.98/291.56 minus < help 310.98/291.56 plus < help 310.98/291.56 310.98/291.56 ---------------------------------------- 310.98/291.56 310.98/291.56 (7) RewriteLemmaProof (LOWER BOUND(ID)) 310.98/291.56 Proved the following rewrite lemma: 310.98/291.56 le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) 310.98/291.56 310.98/291.56 Induction Base: 310.98/291.56 le(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) 310.98/291.56 true 310.98/291.56 310.98/291.56 Induction Step: 310.98/291.56 le(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) 310.98/291.56 le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) ->_IH 310.98/291.56 true 310.98/291.56 310.98/291.56 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 310.98/291.56 ---------------------------------------- 310.98/291.56 310.98/291.56 (8) 310.98/291.56 Complex Obligation (BEST) 310.98/291.56 310.98/291.56 ---------------------------------------- 310.98/291.56 310.98/291.56 (9) 310.98/291.56 Obligation: 310.98/291.56 Proved the lower bound n^1 for the following obligation: 310.98/291.56 310.98/291.56 TRS: 310.98/291.56 Rules: 310.98/291.56 le(0', y) -> true 310.98/291.56 le(s(x), 0') -> false 310.98/291.56 le(s(x), s(y)) -> le(x, y) 310.98/291.56 minus(x, 0') -> x 310.98/291.56 minus(0', s(y)) -> 0' 310.98/291.56 minus(s(x), s(y)) -> minus(x, y) 310.98/291.56 plus(x, 0') -> x 310.98/291.56 plus(x, s(y)) -> s(plus(x, y)) 310.98/291.56 mod(s(x), 0') -> 0' 310.98/291.56 mod(x, s(y)) -> help(x, s(y), 0') 310.98/291.56 help(x, s(y), c) -> if(le(c, x), x, s(y), c) 310.98/291.56 if(true, x, s(y), c) -> help(x, s(y), plus(c, s(y))) 310.98/291.56 if(false, x, s(y), c) -> minus(x, minus(c, s(y))) 310.98/291.56 310.98/291.56 Types: 310.98/291.56 le :: 0':s -> 0':s -> true:false 310.98/291.56 0' :: 0':s 310.98/291.56 true :: true:false 310.98/291.56 s :: 0':s -> 0':s 310.98/291.56 false :: true:false 310.98/291.56 minus :: 0':s -> 0':s -> 0':s 310.98/291.56 plus :: 0':s -> 0':s -> 0':s 310.98/291.56 mod :: 0':s -> 0':s -> 0':s 310.98/291.56 help :: 0':s -> 0':s -> 0':s -> 0':s 310.98/291.56 if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s 310.98/291.56 hole_true:false1_0 :: true:false 310.98/291.56 hole_0':s2_0 :: 0':s 310.98/291.56 gen_0':s3_0 :: Nat -> 0':s 310.98/291.56 310.98/291.56 310.98/291.56 Generator Equations: 310.98/291.56 gen_0':s3_0(0) <=> 0' 310.98/291.56 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 310.98/291.56 310.98/291.56 310.98/291.56 The following defined symbols remain to be analysed: 310.98/291.56 le, minus, plus, help 310.98/291.56 310.98/291.56 They will be analysed ascendingly in the following order: 310.98/291.56 le < help 310.98/291.56 minus < help 310.98/291.56 plus < help 310.98/291.56 310.98/291.56 ---------------------------------------- 310.98/291.56 310.98/291.56 (10) LowerBoundPropagationProof (FINISHED) 310.98/291.56 Propagated lower bound. 310.98/291.56 ---------------------------------------- 310.98/291.56 310.98/291.56 (11) 310.98/291.56 BOUNDS(n^1, INF) 310.98/291.56 310.98/291.56 ---------------------------------------- 310.98/291.56 310.98/291.56 (12) 310.98/291.56 Obligation: 310.98/291.56 TRS: 310.98/291.56 Rules: 310.98/291.56 le(0', y) -> true 310.98/291.56 le(s(x), 0') -> false 310.98/291.56 le(s(x), s(y)) -> le(x, y) 310.98/291.56 minus(x, 0') -> x 310.98/291.56 minus(0', s(y)) -> 0' 310.98/291.56 minus(s(x), s(y)) -> minus(x, y) 310.98/291.56 plus(x, 0') -> x 310.98/291.56 plus(x, s(y)) -> s(plus(x, y)) 310.98/291.56 mod(s(x), 0') -> 0' 310.98/291.56 mod(x, s(y)) -> help(x, s(y), 0') 310.98/291.56 help(x, s(y), c) -> if(le(c, x), x, s(y), c) 310.98/291.56 if(true, x, s(y), c) -> help(x, s(y), plus(c, s(y))) 310.98/291.56 if(false, x, s(y), c) -> minus(x, minus(c, s(y))) 310.98/291.56 310.98/291.56 Types: 310.98/291.56 le :: 0':s -> 0':s -> true:false 310.98/291.56 0' :: 0':s 310.98/291.56 true :: true:false 310.98/291.56 s :: 0':s -> 0':s 310.98/291.56 false :: true:false 310.98/291.56 minus :: 0':s -> 0':s -> 0':s 310.98/291.56 plus :: 0':s -> 0':s -> 0':s 310.98/291.56 mod :: 0':s -> 0':s -> 0':s 310.98/291.56 help :: 0':s -> 0':s -> 0':s -> 0':s 310.98/291.56 if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s 310.98/291.56 hole_true:false1_0 :: true:false 310.98/291.56 hole_0':s2_0 :: 0':s 310.98/291.56 gen_0':s3_0 :: Nat -> 0':s 310.98/291.56 310.98/291.56 310.98/291.56 Lemmas: 310.98/291.56 le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) 310.98/291.56 310.98/291.56 310.98/291.56 Generator Equations: 310.98/291.56 gen_0':s3_0(0) <=> 0' 310.98/291.56 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 310.98/291.56 310.98/291.56 310.98/291.56 The following defined symbols remain to be analysed: 310.98/291.56 minus, plus, help 310.98/291.56 310.98/291.56 They will be analysed ascendingly in the following order: 310.98/291.56 minus < help 310.98/291.56 plus < help 310.98/291.56 310.98/291.56 ---------------------------------------- 310.98/291.56 310.98/291.56 (13) RewriteLemmaProof (LOWER BOUND(ID)) 310.98/291.56 Proved the following rewrite lemma: 310.98/291.56 minus(gen_0':s3_0(n270_0), gen_0':s3_0(n270_0)) -> gen_0':s3_0(0), rt in Omega(1 + n270_0) 310.98/291.56 310.98/291.56 Induction Base: 310.98/291.56 minus(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) 310.98/291.56 gen_0':s3_0(0) 310.98/291.56 310.98/291.56 Induction Step: 310.98/291.56 minus(gen_0':s3_0(+(n270_0, 1)), gen_0':s3_0(+(n270_0, 1))) ->_R^Omega(1) 310.98/291.56 minus(gen_0':s3_0(n270_0), gen_0':s3_0(n270_0)) ->_IH 310.98/291.56 gen_0':s3_0(0) 310.98/291.56 310.98/291.56 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 310.98/291.56 ---------------------------------------- 310.98/291.56 310.98/291.56 (14) 310.98/291.56 Obligation: 310.98/291.56 TRS: 310.98/291.56 Rules: 310.98/291.56 le(0', y) -> true 310.98/291.56 le(s(x), 0') -> false 310.98/291.56 le(s(x), s(y)) -> le(x, y) 310.98/291.56 minus(x, 0') -> x 310.98/291.56 minus(0', s(y)) -> 0' 310.98/291.56 minus(s(x), s(y)) -> minus(x, y) 310.98/291.56 plus(x, 0') -> x 310.98/291.56 plus(x, s(y)) -> s(plus(x, y)) 310.98/291.56 mod(s(x), 0') -> 0' 310.98/291.56 mod(x, s(y)) -> help(x, s(y), 0') 310.98/291.56 help(x, s(y), c) -> if(le(c, x), x, s(y), c) 310.98/291.56 if(true, x, s(y), c) -> help(x, s(y), plus(c, s(y))) 310.98/291.56 if(false, x, s(y), c) -> minus(x, minus(c, s(y))) 310.98/291.56 310.98/291.56 Types: 310.98/291.56 le :: 0':s -> 0':s -> true:false 310.98/291.56 0' :: 0':s 310.98/291.56 true :: true:false 310.98/291.56 s :: 0':s -> 0':s 310.98/291.56 false :: true:false 310.98/291.56 minus :: 0':s -> 0':s -> 0':s 310.98/291.56 plus :: 0':s -> 0':s -> 0':s 310.98/291.56 mod :: 0':s -> 0':s -> 0':s 310.98/291.56 help :: 0':s -> 0':s -> 0':s -> 0':s 310.98/291.56 if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s 310.98/291.56 hole_true:false1_0 :: true:false 310.98/291.56 hole_0':s2_0 :: 0':s 310.98/291.56 gen_0':s3_0 :: Nat -> 0':s 310.98/291.56 310.98/291.56 310.98/291.56 Lemmas: 310.98/291.56 le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) 310.98/291.56 minus(gen_0':s3_0(n270_0), gen_0':s3_0(n270_0)) -> gen_0':s3_0(0), rt in Omega(1 + n270_0) 310.98/291.56 310.98/291.56 310.98/291.56 Generator Equations: 310.98/291.56 gen_0':s3_0(0) <=> 0' 310.98/291.56 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 310.98/291.56 310.98/291.56 310.98/291.56 The following defined symbols remain to be analysed: 310.98/291.56 plus, help 310.98/291.56 310.98/291.56 They will be analysed ascendingly in the following order: 310.98/291.56 plus < help 310.98/291.56 310.98/291.56 ---------------------------------------- 310.98/291.56 310.98/291.56 (15) RewriteLemmaProof (LOWER BOUND(ID)) 310.98/291.56 Proved the following rewrite lemma: 310.98/291.56 plus(gen_0':s3_0(a), gen_0':s3_0(n657_0)) -> gen_0':s3_0(+(n657_0, a)), rt in Omega(1 + n657_0) 310.98/291.56 310.98/291.56 Induction Base: 310.98/291.56 plus(gen_0':s3_0(a), gen_0':s3_0(0)) ->_R^Omega(1) 310.98/291.56 gen_0':s3_0(a) 310.98/291.56 310.98/291.56 Induction Step: 310.98/291.56 plus(gen_0':s3_0(a), gen_0':s3_0(+(n657_0, 1))) ->_R^Omega(1) 310.98/291.56 s(plus(gen_0':s3_0(a), gen_0':s3_0(n657_0))) ->_IH 310.98/291.56 s(gen_0':s3_0(+(a, c658_0))) 310.98/291.56 310.98/291.56 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 310.98/291.56 ---------------------------------------- 310.98/291.56 310.98/291.56 (16) 310.98/291.56 Obligation: 310.98/291.56 TRS: 310.98/291.56 Rules: 310.98/291.56 le(0', y) -> true 310.98/291.56 le(s(x), 0') -> false 310.98/291.56 le(s(x), s(y)) -> le(x, y) 310.98/291.56 minus(x, 0') -> x 310.98/291.56 minus(0', s(y)) -> 0' 310.98/291.56 minus(s(x), s(y)) -> minus(x, y) 310.98/291.56 plus(x, 0') -> x 310.98/291.56 plus(x, s(y)) -> s(plus(x, y)) 310.98/291.56 mod(s(x), 0') -> 0' 310.98/291.56 mod(x, s(y)) -> help(x, s(y), 0') 310.98/291.56 help(x, s(y), c) -> if(le(c, x), x, s(y), c) 310.98/291.56 if(true, x, s(y), c) -> help(x, s(y), plus(c, s(y))) 310.98/291.56 if(false, x, s(y), c) -> minus(x, minus(c, s(y))) 310.98/291.56 310.98/291.56 Types: 310.98/291.56 le :: 0':s -> 0':s -> true:false 310.98/291.56 0' :: 0':s 310.98/291.56 true :: true:false 310.98/291.56 s :: 0':s -> 0':s 310.98/291.56 false :: true:false 310.98/291.56 minus :: 0':s -> 0':s -> 0':s 310.98/291.56 plus :: 0':s -> 0':s -> 0':s 310.98/291.56 mod :: 0':s -> 0':s -> 0':s 310.98/291.56 help :: 0':s -> 0':s -> 0':s -> 0':s 310.98/291.56 if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s 310.98/291.56 hole_true:false1_0 :: true:false 310.98/291.56 hole_0':s2_0 :: 0':s 310.98/291.56 gen_0':s3_0 :: Nat -> 0':s 310.98/291.56 310.98/291.56 310.98/291.56 Lemmas: 310.98/291.56 le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) 310.98/291.56 minus(gen_0':s3_0(n270_0), gen_0':s3_0(n270_0)) -> gen_0':s3_0(0), rt in Omega(1 + n270_0) 310.98/291.56 plus(gen_0':s3_0(a), gen_0':s3_0(n657_0)) -> gen_0':s3_0(+(n657_0, a)), rt in Omega(1 + n657_0) 310.98/291.56 310.98/291.56 310.98/291.56 Generator Equations: 310.98/291.56 gen_0':s3_0(0) <=> 0' 310.98/291.56 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 310.98/291.56 310.98/291.56 310.98/291.56 The following defined symbols remain to be analysed: 310.98/291.56 help 310.98/291.60 EOF