3.42/1.67 WORST_CASE(NON_POLY, ?) 3.42/1.68 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.42/1.68 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.42/1.68 3.42/1.68 3.42/1.68 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.42/1.68 3.42/1.68 (0) CpxTRS 3.42/1.68 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.42/1.68 (2) TRS for Loop Detection 3.42/1.68 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.42/1.68 (4) BEST 3.42/1.68 (5) proven lower bound 3.42/1.68 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.42/1.68 (7) BOUNDS(n^1, INF) 3.42/1.68 (8) TRS for Loop Detection 3.42/1.68 (9) DecreasingLoopProof [FINISHED, 26 ms] 3.42/1.68 (10) BOUNDS(EXP, INF) 3.42/1.68 3.42/1.68 3.42/1.68 ---------------------------------------- 3.42/1.68 3.42/1.68 (0) 3.42/1.68 Obligation: 3.42/1.68 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.42/1.68 3.42/1.68 3.42/1.68 The TRS R consists of the following rules: 3.42/1.68 3.42/1.68 plus(0, x) -> x 3.42/1.68 plus(s(x), y) -> s(plus(x, y)) 3.42/1.68 times(0, y) -> 0 3.42/1.68 times(s(x), y) -> plus(y, times(x, y)) 3.42/1.68 exp(x, 0) -> s(0) 3.42/1.68 exp(x, s(y)) -> times(x, exp(x, y)) 3.42/1.68 ge(x, 0) -> true 3.42/1.68 ge(0, s(x)) -> false 3.42/1.68 ge(s(x), s(y)) -> ge(x, y) 3.42/1.68 tower(x, y) -> towerIter(0, x, y, s(0)) 3.42/1.68 towerIter(c, x, y, z) -> help(ge(c, x), c, x, y, z) 3.42/1.68 help(true, c, x, y, z) -> z 3.42/1.68 help(false, c, x, y, z) -> towerIter(s(c), x, y, exp(y, z)) 3.42/1.68 3.42/1.68 S is empty. 3.42/1.68 Rewrite Strategy: FULL 3.42/1.68 ---------------------------------------- 3.42/1.68 3.42/1.68 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.42/1.68 Transformed a relative TRS into a decreasing-loop problem. 3.42/1.68 ---------------------------------------- 3.42/1.68 3.42/1.68 (2) 3.42/1.68 Obligation: 3.42/1.68 Analyzing the following TRS for decreasing loops: 3.42/1.68 3.42/1.68 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.42/1.68 3.42/1.68 3.42/1.68 The TRS R consists of the following rules: 3.42/1.68 3.42/1.68 plus(0, x) -> x 3.42/1.68 plus(s(x), y) -> s(plus(x, y)) 3.42/1.68 times(0, y) -> 0 3.42/1.68 times(s(x), y) -> plus(y, times(x, y)) 3.42/1.68 exp(x, 0) -> s(0) 3.42/1.68 exp(x, s(y)) -> times(x, exp(x, y)) 3.42/1.68 ge(x, 0) -> true 3.42/1.68 ge(0, s(x)) -> false 3.42/1.68 ge(s(x), s(y)) -> ge(x, y) 3.42/1.68 tower(x, y) -> towerIter(0, x, y, s(0)) 3.42/1.68 towerIter(c, x, y, z) -> help(ge(c, x), c, x, y, z) 3.42/1.68 help(true, c, x, y, z) -> z 3.42/1.68 help(false, c, x, y, z) -> towerIter(s(c), x, y, exp(y, z)) 3.42/1.68 3.42/1.68 S is empty. 3.42/1.68 Rewrite Strategy: FULL 3.42/1.68 ---------------------------------------- 3.42/1.68 3.42/1.68 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.42/1.68 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.42/1.68 3.42/1.68 The rewrite sequence 3.42/1.68 3.42/1.68 exp(x, s(y)) ->^+ times(x, exp(x, y)) 3.42/1.68 3.42/1.68 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 3.42/1.68 3.42/1.68 The pumping substitution is [y / s(y)]. 3.42/1.68 3.42/1.68 The result substitution is [ ]. 3.42/1.68 3.42/1.68 3.42/1.68 3.42/1.68 3.42/1.68 ---------------------------------------- 3.42/1.68 3.42/1.68 (4) 3.42/1.68 Complex Obligation (BEST) 3.42/1.68 3.42/1.68 ---------------------------------------- 3.42/1.68 3.42/1.68 (5) 3.42/1.68 Obligation: 3.42/1.68 Proved the lower bound n^1 for the following obligation: 3.42/1.68 3.42/1.68 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.42/1.68 3.42/1.68 3.42/1.68 The TRS R consists of the following rules: 3.42/1.68 3.42/1.68 plus(0, x) -> x 3.42/1.68 plus(s(x), y) -> s(plus(x, y)) 3.42/1.68 times(0, y) -> 0 3.42/1.68 times(s(x), y) -> plus(y, times(x, y)) 3.42/1.68 exp(x, 0) -> s(0) 3.42/1.68 exp(x, s(y)) -> times(x, exp(x, y)) 3.42/1.68 ge(x, 0) -> true 3.42/1.68 ge(0, s(x)) -> false 3.42/1.68 ge(s(x), s(y)) -> ge(x, y) 3.42/1.68 tower(x, y) -> towerIter(0, x, y, s(0)) 3.42/1.68 towerIter(c, x, y, z) -> help(ge(c, x), c, x, y, z) 3.42/1.68 help(true, c, x, y, z) -> z 3.42/1.68 help(false, c, x, y, z) -> towerIter(s(c), x, y, exp(y, z)) 3.42/1.68 3.42/1.68 S is empty. 3.42/1.68 Rewrite Strategy: FULL 3.42/1.68 ---------------------------------------- 3.42/1.68 3.42/1.68 (6) LowerBoundPropagationProof (FINISHED) 3.42/1.68 Propagated lower bound. 3.42/1.68 ---------------------------------------- 3.42/1.68 3.42/1.68 (7) 3.42/1.68 BOUNDS(n^1, INF) 3.42/1.68 3.42/1.68 ---------------------------------------- 3.42/1.68 3.42/1.68 (8) 3.42/1.68 Obligation: 3.42/1.68 Analyzing the following TRS for decreasing loops: 3.42/1.68 3.42/1.68 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.42/1.68 3.42/1.68 3.42/1.68 The TRS R consists of the following rules: 3.42/1.68 3.42/1.68 plus(0, x) -> x 3.42/1.68 plus(s(x), y) -> s(plus(x, y)) 3.42/1.68 times(0, y) -> 0 3.42/1.68 times(s(x), y) -> plus(y, times(x, y)) 3.42/1.68 exp(x, 0) -> s(0) 3.42/1.68 exp(x, s(y)) -> times(x, exp(x, y)) 3.42/1.68 ge(x, 0) -> true 3.42/1.68 ge(0, s(x)) -> false 3.42/1.68 ge(s(x), s(y)) -> ge(x, y) 3.42/1.68 tower(x, y) -> towerIter(0, x, y, s(0)) 3.42/1.68 towerIter(c, x, y, z) -> help(ge(c, x), c, x, y, z) 3.42/1.68 help(true, c, x, y, z) -> z 3.42/1.68 help(false, c, x, y, z) -> towerIter(s(c), x, y, exp(y, z)) 3.42/1.68 3.42/1.68 S is empty. 3.42/1.68 Rewrite Strategy: FULL 3.42/1.68 ---------------------------------------- 3.42/1.68 3.42/1.68 (9) DecreasingLoopProof (FINISHED) 3.42/1.68 The following loop(s) give(s) rise to the lower bound EXP: 3.42/1.68 3.42/1.68 The rewrite sequence 3.42/1.68 3.42/1.68 exp(s(x1_0), s(y)) ->^+ plus(exp(s(x1_0), y), times(x1_0, exp(s(x1_0), y))) 3.42/1.68 3.42/1.68 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.42/1.68 3.42/1.68 The pumping substitution is [y / s(y)]. 3.42/1.68 3.42/1.68 The result substitution is [ ]. 3.42/1.68 3.42/1.68 3.42/1.68 3.42/1.68 The rewrite sequence 3.42/1.68 3.42/1.68 exp(s(x1_0), s(y)) ->^+ plus(exp(s(x1_0), y), times(x1_0, exp(s(x1_0), y))) 3.42/1.68 3.42/1.68 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1]. 3.42/1.68 3.42/1.68 The pumping substitution is [y / s(y)]. 3.42/1.68 3.42/1.68 The result substitution is [ ]. 3.42/1.68 3.42/1.68 3.42/1.68 3.42/1.68 3.42/1.68 ---------------------------------------- 3.42/1.68 3.42/1.68 (10) 3.42/1.68 BOUNDS(EXP, INF) 3.63/1.71 EOF